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FOREWORD

This report is the result of studies funded as part of the National Acid Deposition
Assessment Program (NAPAP) by the U.S. Department of Energy and, in earlier stages,
also by the U.S. Environmental Protection Agency. The work originated as part of the
studies that were managed by Task Group I, Assessments, and were aimed at supporting
studies of the atmospheric sciences and source/receptor relationships, part of NAPAP's
1985 Assessment. A principal objective of those studies was to understand the
performance characteristies of available atmospheric transport and deposition models for
use in predicting the environmental impacts of sulfur emissions and in the possible
development of optimal emission-control strategies. In particular, quantitative
estimates of the uncertainty associated with certain aspects of model predictions are
important to estimate the uncertainties in impaet analyses and to determine the
confidence that one should place in proposed policies and emission-control strategies.
Model evaluation studies have often provided only limited insight into the nature of
performance errors. Furthermore, the results sometimes do not address the performance
factors of most importance to those using models for policy and assessment
applications. In practical applications, the principal question is not why a model misses
the mark, but by how much and in what manner it tends to miss. However, the apparent
error between model predictions and observed values may also result in part from
limitations in the observations, which needs to be taken into account in assessing the
model's true performance.

The present study was intended to evaluate a range of statistical performance
measures and to develop and test several new methods applied intensively to one model;
however, the objectives and scope were still limited. Determination of the uncertainty
in model-derived source/receptor relationships did not appear to be feasible from a
comparison of the model predictions with the limited number of observations of
deposition currently available. At best, it may be possible to estimate or place bounds on
the uncertainty in predictions of deposition and to understand the character of those
uncertainties. The performance of a model in predicting deposition and air-quality
changes in response to large emission changes, outside the bounds of experience with
historical evaluated data, cannot be confidently determined by the present methods.
New approaches appear to be needed to provide a better understanding of the character
of model errors and to estimate the uncertainties in future predictions within a limited
domain, based on a comparison of predictions with historical observations. We hope that
the results reported on here will be useful and can be applied to other models, as well as
refined by further application with more extensive data.

Richard H. Ball
Office of Environmental Analysis
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ERROR PATTERN EVALUATION AND UNCERTAINTY
QUANTIFICATION FOR A REGIONAL-SCALE
(LAGRANGIAN STATISTICAL TRAJECTORY)

ATMOSPHERIC TRANSPORT AND
ACID-DEPOSITION MODEL

by

Michael A. Lazaro and Jack D. Shannon

SUMMARY

Knowledge of the relationship between causes and effects plays a key role when
decisions involving scientific understanding and public policy formulation (seience-policy
decisions) are made. For instance, to achieve a particular improvement in environmental
quality, policymakers need to know what causes the problems in order to decide what
actions to take. Unfortunately, uncertainty is inherent in any decision-making process
involving environmental issues. It is inherent in estimates of the types, probability, and
magnitude of these adverse effects themselves. It is also inherent in estimates of the
effects of the policy proposed to solve these problems -- both the economic effects and
the existing and future environmental effects (on ecosystems and humans). The
uncertainty in a proposed plan of action results from unpredictability caused by the
policymaker's lack of knowledge or information and the incompleteness or unreliability of
the information itself. This uncertainty can never be eliminated in science-policy
decisions. In certain circumstances, however, it can be reduced, and it can be
systematically analyzed and quantified so that the policy makers will be informed when
deciding which options to consider and act upon. Deciding when an action can be taken is
an issue based more on socioeconomics and political readiness than on the degree of
scientific certainty. »

This general understanding of the relationships among causes, effects, and
science-policy decisions is relevant to determination of future policies on acid
deposition. Knowledge, understanding, and ability in five important areas are
prerequisites for developing, evaluating, and selecting the most cost-effective acid-
deposition control and mitigation options. The areas are (1) an understanding of the
causes of acid deposition from pollutant source-atmospheric interactions (source-term),
(2) an understanding of the processes involved in the transfer of pollutants in source-
receptor interactions (atmospheric term), (3) a knowledge of the impacts of deposition
from atmosphere-receptor interactions (receptor term), (4) the ability to assess risks and
perform a cost-benefit analysis (decision analysis term), and (5) the ability to estimate
error and uncertainty (uncertainty analysis term) in the model estimates of sources of
pollutant releases (causes), pollutant transmission and deposition, ecosystem damages and
human health impacts (effects), and costs of deposition damages and pollutant controls.
This study addresses limited aspects of the second and fifth areas (atmospheric term and
uncertainty analysis term) by developing an analytical framework to describe and
quantify error and uncertainty in long-range transport model predictions. The framework
is composed of two components, a methodology for empirical Bayesian uncertainty



analysis and a methodology for parametric statistical error pattern analysis. The details
and results of the latter component are given here, and the types and patterns of error
are described and quantified.

One of the major goals of the National Acid Precipitation Assessment Program
(NAPAP) is to provide objective and accurate estimates of the current contributions of
anthropogenic and natural sources of acidic deposition, and estimates of the expected
changes to these contributions from modifications in emission source strengths (NAPAP
1987a). This goal requires two types of "source-receptor relationships" (SRRs) to be
developed: (1) SRRs that apportion the contribution from source areas (i.e., industrial
centers, geopolitical regions) to receptor areas of acidic deposition (i.e., sensitive
watershed, geopolitical regions) and (2) SRRs that forecast response in acidic deposition
to receptor areas as a result of modifications to the emissions. The goal of this study is
not to provide apportionment or forecast response SRRs but to provide a framework for
quantifying the error and uncertainty in model predictions that may be used in providing
SRRs for policy-decision analysis. The framework is composed of two components. The
primary component uses an empirical Bayesian approach to quantify uncertainty in SRRs
in probabilistic terms. This approach provides a means to compute the probability of the
outcome (success or failure) of a set of proposed actions (i.e., policy options for control
or mitigation of acid deposition) based upon the computed uncertainty in predicted
variables pertinent to judging the success or failure of technologically and economically
viable policy options. The ability to quantify the uncertainty in both the apportionment
and forecast response SRR is of key importance to informed decision making. The
second component of the framework uses some newly developed approaches to error
pattern and error decomposition analysis along with some more traditional approaches to
elicit patterns of the apparent error in model predictions. These approaches are not only
important in expressing how well a model is performing but can also help provide, with
accompanying model evaluation data-base and methodology enhancements, a better
understanding of why a model performs the way it does. This understanding is eritical to
identifying and correcting the weak links in the modeling process. Because the empirical
Bayesian approach has not been fully developed and tested, only the results from the
second component of the framework for quantifying error and uncertainty in model
prediction are reported at this time.

The principal objective of this study is to develop a flexible methodology to
evaluate model performance that would help in the understanding of the characteristics
and magnitude of the apparent error in model predictions. Because the characteristies of
apparent model error can be highly complex, with multiple and interdependent causes, we
adopted an approach that encompasses a combination of several new and existing
statistical performance measures. This approach recognizes that no single or narrow
group of performance measures (e.g., traditional distributional statistics designed to
measure bias, correlation, and variance) can be used exclusively to uncover all the
important characteristics of model performance. Our intention is not necessarily to
determine why, in a diagnostic sense, a model performs well or poorly, although if causes
of poor model performance can be identified and confirmed, we hope to be able to
communicate this information to model developers so that model components and data-
base elements can be improved. Rather, our task is simply to provide informative
measures of how well or poorly, in an operational sense, a model performs uynder



different observable conditions and constraints. Results from model applications can
then be quantified in terms of expected level of error. This study should, therefore, be
viewed mainly from an application or operational perspective on evaluating and
comparing models and model sensitivity rather than from a diagnostic or research-
oriented perspective on improving model performance. Such information, if presented in
a form that decision makers can understand and use, can have important implications for
policy formulation and decision making.

Our specific goal is to develop a better understanding of the performance
characteristics and apparent error of a long-term regional transport and deposition
model. We intend to determine how well the predictions of the Advanced Statistical
Trajectory Regional Air Pollution (ASTRAP) model compare with corresponding
observations. Another goal is to discern and quantify differences in spatial and temporal
patterns in seasonal and monthly mean observations and predictions and to determine the
bias and scatter in model predictions. With respect to temporal patterns, we are
interested in (1) how well the relative magt}_itudes of the peak seasonal wet sulfate (SOZ)
deposition and the peak monthly mean S0 and sulfur dioxide (SOg) air concentrations
(DAC) are reproduced in time, (2) how performance differs in seasons of the same year
(interseasonal performance), and (3) how performance differs in seasons of separate years
(interannual performance). With respect to spatial patterns, we are interested in (1) the
location and magnitude of maxima, and (2) the location, orientation, shape, and gradient
in the DAC contours.

The ASTRAP model evaluation data base used in this study consisted of monthly
average SO} and SO, air concentrations for four months in 1978, and seasonal wet SO
deposition over a two-year period beginning in December 1979 and ending in November
1981. Greater physical understanding of model performance could be gained if
predictions of wet deposition and air concentrations were evaluated for the same
periods. For example, simulated atmospheric concentrations might be too low because
parameterized wet removal is too high, but if simulated wet deposition for the same
period is also too low, then some other feature mist be involved. Similar deductive
reasoning is possible if dry-deposition observations are also available for the same
period. Unfortunately, suitable observation data sets for wet deposition, regional air
quality, and/or dry deposition did not coincide. Nevertheless, the model evaluation
methodology employed, along with model evaluation data base, did provide some useful
and pertinent findings about the performance of the ASTRAP model.

Table S.1 summarizes the level of ASTRAP's performance when simulating
monthly average SOZ and SO, air concentrations and seasonal wet SOZ deposition. The
scatter error and bias error in model predictions are indicated by five nondimensional
performance measures. The rank score error (RSI) is a performance measure designed to
combine and balance the bias- and scatter-measuring attributes of the other four
measures. The mean log error shows a strong tendency toward model overprediction of
mean monthly SOZ concentrations in October and a lesser degree of model
underprediction of mean monthly SOg concentrations in January and April. The bias
error is relatively small for the remaining monthly simulations. The same measures
indicate a relatively large model overprediction of 1980 autumn and spring wet SOZ
deposition and a lesser degree of model overprediction in the winter. The bias error is
relatively small in the 1981 summer and spring. Overall the model performs best, as



TABLE S.1 Summary of Nondimensional Indices of
ASTRAP Performance for Predictions of Monthly
Average Sulfate and Sulfur Dioxide Air Concen-
trations and for Seasonal Wet Sulfate Deposition

Performance Index?

Predicted Variable I0A VLE DMSE MLE RSI
Air Concentrations
January 1978
SO: 0.60 022907132 0.105 2213
S0, 0.62 0.232 0.309 0.254 2.41
April 1978
S0 0.56  0.058 0.690 =-0.118 2.65
S0, 0.61 0.163 0.294 0.240 2.35
July 1978
S0, 0.83  0.056 0.044  0.059 1.36
S0, (¢}57/5) 0.198 0.254 0.109 1.90
October 1978
SOZ 0.45 0.076 0.251 =-0.429 2.97
S0, 0.72 0.158 0.225 0.019 1.80
Wet SO Deposition
Winter
1980 0.49 0.262 0.274 ~0.246 2,82
1981 0.67 0.242 +.0.272 0 =0,19752:2.20
Spring
1980 0.63 0.121 0,242 -0,351 2230
1981 0.82 0.116 0.114 0.015 1.47
Summer
1980 0.85 0.138 0.161 =0.055 1253
1981 0.85 0.100 o0.110 0.054 1.44
Autumn
1980 0.57 0.215 0.398 -0.405 .79
1981 0.70 0.135 0.230 -0.315 2.11

310A = index of agreement (range 0.0. to 1.0} 1.0 = perfect
model; 0.65 to 0.75 = average performance)

VLE = variance logarithmic error (performance improves as
it approaches zero)

DMSE = dimensionless mean square error (range 0.0 to ~5.0;

0.0 = perfect model)

MLE = mean logarithmic error (performance improves as it
approaches zero)
RSI = rank score index (range 1.0 to ~10.0; 1.0 = perfect

model; 1.7 to 2.0

average performance)



measured by RSI, in simulating July SO air concentrations. Performance on a
comparatively high level is also exhibited for simulation of wet SO4 deposition for the
summer and spring of 1981. Relatively poor performance is shown for October SO4 and
January SO, air concentrations and winter and autumn 1980 wet SO4 deposition.

The magnitude of maximum seasonal wet SOZ deposition and monthly mean air
concentrations can be reproduced reasonably well. Without additional years of model
evaluation data, however, it is not possible to determine whether temporal patterns in
observed wet SOi deposition are also reasonably reproduced by the model. The limited
data analyses show significant interseasonal and interannual (between winters, springs,
and autumns) differences in model performance. More data are needed to confirm this.

Perturbations of four model parameters within the estimated range of
uncertainty of these parameters revealed that simulations of SO: air concentrations are
most sensitive to variations in transformation rate (T.), while SO2 concentrations are
most sensitive to variations in dry-deposition veloecity (Vd) Wet SO} deposition is most
sensitive to variations in the wet-removal coefficient (WC). The systematic error
reduction potential (SERP), through adjustments in these parameters, is most significant
for simulations of October and January SOZ (SERP = 59% and 23%) and April SOy (SERP
= 23%) air concentrations and for simulations of autumn (41% in 1981) and spring (22% in
1980) wet SO4 deposition. This suggests that a significant fraction of the systematic
error in model predictions for these monthly and seasonal periods, most notably October
1978 and autumn 1981, can be reduced through adjustments in model parameterization.
Systematic error in model predictions may be associated not only with model
parameterizations but also with the estimation of source emissions and the analysis of
wind and precipitation fields. Errors or unrepresentativeness in verification data can
lead to an apparent systematic error in model predictions. Without a means to segregate
the sources of systematic error in model predictions, any revisions to model
parameterization should be made cautiously and should be based upon relevant field
measurement, of key processes. In Sec. 6.2, discussions stress the importance of
quantifying model input and model evaluation data (field measurements of DAC) error,
and recommendations are given for the statistical treatment of this error to more readily
identify its sources (i.e., model parameterization, field measurement).

Error patterns are examined by decomposition of mean square error (MSE) into
its spatial, temporal, and bias components and by decomposition of variance into spatial
and temporal components. Kriging is then used to further examine ASTRAP's ability to
reproduce spatial patterns in the observational fields (such as the position, shape,
orientation, and magnitude of the gradient in the isolines). The spatial error in ASTRAP
predictions of wet SO4 deposition dominates, accounting for over 70% of the total error
in the winter, spring, and summer. The predicted wet SO4 deposition in the autumn
shows comparative levels of spatial and bias error, with a relatively small contribution of
temporal error to the total error. The temporal error across seasons is smaller than the
other two error components, particularly for winter and autumn. These results are
probably caused by the statistically small number of data points (two seasons) considered
in our analysis. Although only 50% of the error in the autumn predictions is spatial in
origin, the relative larger overall error in autumn (73% to 122% greater than in spring
and summer) makes the spatial error in autumn slightly larger than that in spring and



summer. The computed bias-corrected variances (EBCVs) show that the model's ability
to explain variance in summer simulations (over 40%) is substantially better than its
ability to explain variance in other seasons. In fact, the negative EBCVs computed for
the winter, spring, and autumn simulations show the model does not do well in explaining
observed interannual variance for these seasons. This fact seems to indicate that the
interannual correspondence between predictions and observations for nonsummer
simulations are nearly random. These results should be viewed with ecaution because of
the limited data available at the start of the study.

Results from the kriging analysis provided additional indications of ASTRAP's
limitations in reproducing monthly and seasonal patterns in DAC, although the extent to
which the various monitoring sites captured the regional patterns remains a contentious
matter. This analysis showed that although the magnitudes of the observed maxima in
SOj air concentrations and wet SOj deposition are reasonably reproduced, the locations
of these maxima are not. The model had difficulty in reproducing the position, shape,
and magnitude of the gradient in the observed spatial patterns. Although there are no
significant variations in the magnitudes of the predicted and observed interannual
maximum wet depositions, there are significant variations in the loeations of the
observed maxima. Since variability in meteorology plays an important role in influencing
locations where observed maxima occur, the difficulty that ASTRAP and, indeed, all
regional transport models have in properly characterizing local or subgrid variations in
wind and precipitation fields may be an important contributing factor in the model's
inability to accurately locate the maximum deposition areas. This difficulty in
characterizing the stochastic nature of winds and precipitation may also play an
important role in the poor reproduction of other spatial features in the observed data,
such as the shape, orientation, and magnitude of the deposition gradient, although
simplifications in parameterizations of chemical or removal processes may also
contribute. This hypothesis needs to be investigated through an analysis of alternatives,
such as numerical weather prediction models for generating mass-consistent and
dynamically correet winds. Through use of a more complete and longer (through 1986)
precipitation chemistry data base, many of these issues could be more readily addressed.

Our analysis of factors that may influence model performance indicates that
sampling protocol can be a major contributor to the observed apparent model
performance. Significant ASTRAP overpredictions (prediction-observation ratios greater
than two) are more frequent for event or daily collectors than for weekly or monthly
collectors, particularly during the colder seasons. This may be due, in part, to the more
complete oxidation of S(IV) to S(VI) for collectors on longer sampling protoeols. The cold
temperatures and limited availability of oxidants in winter, with a resulting observed
S(IV) maximum observed during this season (Dana 1980), would seem to explain the lower
SO, concentrations in samples that are preserved. The S(IV) would gradually be
converted to S(VI) in samples that are not preserved. The wet-removal parameterization
in ASTRAP is for bulk sulfur; i.e., removal rates for 50, and SOZ are identical. The
rat}opale for this is that while mmal:wet removal of SO; in the atmosphere is more
efficient than removal of SO, (the SOy aerosol serve as cloud condensation nuclei), in-
cloud oxidation of SOy can be rapid, especially in the summer when oxidants are
plentiful. The wet sulfur deposition predicted by ASTRAP corresponds to the bulk sulfur
equivalent of combined S(IV) and S(VI) and should, if S(IV) is not measured, more closely



correspond to observations in which sample preservation of S(IV) is not ensured (NADP,
APIOS-C, CANSAP, etc., sampling networks).

When viewed from the perspective of providing apportionment and forecast
response SRRs, the analysis, provided with the two years of data examined in this study,
seems to indicate that ASTRAP's limited ability to reproduce the spatial patterns of
seasonal wet deposition could affect its usefulness. A fairly strong seasonal dependence
on model performance is also indicated (best during summer or spring for wet deposition
and summer for soz air concentrations). Because of the episodic nature of wet
deposition and because of the model's better performance over periods where the
cumulative episodic and nonepisodic deposition constitute a significant fraction of the
total annual deposition, applications that require development of SRRs (for use in
strategies requiring yearly deposition amounts) are still feasible. Additional years of
model evaluation data and spatial error analysis are needed to better determine this
possibility.

Although this study helps to provide new insights into model performance
evaluation (MPE) methods and better understanding of MPE results, we are still unable to
specify the level of uncertainty in model predictions, and we still lack a fundamental
understanding of why long-range transport models perform the way they do. Three areas
of further research could help provide a means to quantify uncertainty and to improve
our understanding of model performance: (1) the completion of the development and test
application of the empirical Bayesian uncertainty quantification methodology, (2) the
estimation of model input and model evaluation data errors and the explicit incorporation
of these errors into measures of performance of model predictions, and (3) the
investigation of the sensitivity in model performance by local and global variation of an
expanded set of key model and model input variables.






1 INTRODUCTION

The relationship between causes and effects plays a key role in decisions
involving scientific understanding and public policy formulation (seience-policy
decisions). For instance, to achieve a particular change in environmental quality, policy
makers need to know what causes the problems in order to decide what actions to take.
Unfortunately, however, uncertainty is inherent in any plan that is proposed to reduce
adverse effects. It is inherent in estimates of the types, probability, and magnitude of
these adverse effects themselves. It is also inherent in estimates of the effects of the
policy proposed to solve these problems -- both the economic effects and the existing and
future environmental effects (on ecosystems and humans). The uncertainty in a proposed
plan of action results from unpredictability caused by the policy maker's lack of
knowledge or information and the incompleteness or unreliability of the information
itself. This uncertainty can never be eliminated in science-policy decisions. In certain
circumstances, however, it can be reduced, and it can be systematically analyzed and
quantitied so that the policy makers will be informed when deciding which options to
consider and act upon. Deciding when an action can be taken is an issue based more on
socioeconomies and political readiness than on the degree of scientific certainty.

This general understanding of the relationships among causes, effects, and
science-policy decisions is relevant and can be applied to future policies on acid
deposition.  Knowledge and ability in five important areas are prerequisites for
developing, evaluating, and selecting the most cost-effective acid-deposition control and
mitigation options. The areas are (1) an understanding of the causes of acid deposition
from pollutant source-atmospheric interactions, (2) an understanding of the processes
involved in the transfer of pollutants in source-receptor interactions, (3) a knowledge of
the impacts of deposition from atmosphere-receptor interactions, (4) the ability to assess
risks and perform cost-benefit analyses, and (5) the ability to estimate error and
uncertainty in the model estimates of causes (i.e., sources of pollutant releases), transfer
(i.e., transport, deposition), effects (i.e., ecosystem daﬁlages, human health impacts), and
costs (i.e., controls, damages). This study addresses limited aspects of the second and
fifth factors (atmospheric processes and error inherent to modeling these processes) by
developing an analytical framework to describe and quantify the error uncertainty in
long-range transport model predictions.

The framework is composed of two components. The primary component at the
onset of this project consisted of a Bayesian probability approach used to quantify
uncertainty in source-receptor relationships in probablistic terms. Some of the
preliminary Bayesian results were presented at a joint American Meteorological Society
and Air Pollution Control Association Conference held at Chapel Hill, North Carolina, in
November 1986 (see App. A). Because the Bayesian theory is still undergoing
development and testing, the theory and more formal results of this approach are not
discussed in this document. The second component uses some novel approaches along
with more traditional parametric statistical measures of model performance and
statistical graphies to elicit patterns of apparent error in source-receptor relationships.
Some of the preliminary results of this component of our study were also presented at
the conference (also in App. A). The details of this study are given in this report.
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Several uncertain areas must be dealt with in any integrated acid-deposition
policy analysis.* These elements of uncertainty can be grouped into four "terms"
(Fig. 1.1); each term is contingent on the others, and each affects the policy options that
could be considered. Each term forms an independent system of models and data bases
for policy analysis. Examples of the models and data that make up each term are
discussed in the following paragraphs.

Primary and secondary pollutant emission fields are defined as the source term.
The spatial and temporal patterns in these fields can be estimated as retrospective
(under existing controls) or prospective (under alternative control scenarios) source
emission configurations with a variety of source models. These models ecan also provide
cost estimates for various control options under consideration.

The atmospheric component includes meteorological/climatological data and an
atmospheric model to process this and other input data, including source data, in order to
compute spatial and temporal pollutant patterns. Several regional-scale transport
models exist; they are generally of three basiec formulations: Eulerian, Lagrangian, or
statistical. The Eulerian models are generally more sophisticated in their treatment of
atmospheric chemistry and physies and are usually applicable to simulation of episodic
events. The Lagrangian or statistical models generally employ linear first-order
chemistry and treat atmospheric physics in a highly parameterized manner. These
models are usually applicable to longer time periods, on the order of a month to a year.
There are also hybrid combinations of the above three basic model formulations.

Source Term ————» Atmospheric Term — » Receptor Term
(Emissions/Cost) (Transmission/Deposition) (Effects/Damages)

Decision Analysis Term
(Societal Costs/Benefits)

Policy Options
(Success/Failure Probability Levels)

FIGURE 1.1 An Integrated Acid-Deposition Policy Analysis Framework

*The complexity and uncertainty inherent in the many issues associated with acid
deposition demand the development of an integrated methodology or framework to
facilitate decision making. Details on integrated assessments for acid-deposition policy
formulation can be found in Lazaro et al. (1986) and Marnicio et al. (1985).
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The third component of the evaluation matrix is the receptor term. Ecological,
materials, and health dose-response data (where available), along with output data from
atmospheric models, may be used with receptor models to compute spatial and temporal
effects on aquatic and terrestrial ecosystems, materials, and human health. These
models, or the output from these models cdn, in principle, be used to compute economic
damages resulting from the projected effects.

The last element considered is the decision analysis term. Decision analysis
models use societal cost-benefit data along with the computational output from the
previous terms, and where possible, use available observational data (e.g., precipitation
chemistry measurements) to compute and assign probable error for uncertainty
distributions in projected decision-related variables.

Each component of an integrated acid-deposition policy analysis has reducible
and irreducible levels of uncertainty. Reducible uncertainty is defined as uncertainty
that can be quantified in some statistical fashion and measurably reduced by improving
model and model data bases through research and development (e.g., field data collection
and analysis). Irreducible uncertainty is defined as the spatial, temporal, and economic
limit for collection of the field data necessary to improve the understanding of source-
receptor relations (these are interrelationships among the source, atmosphere, and
receptor terms). This uncertainty is of a stochastic nature and prohibits the unique
specification of the state of the atmosphere and biosphere in any given region of space
and time. Table 1.1 identifies the specific elements of uncertainty in each of the
terms.

This study deals primarily with the composite or aggregate error coming from
the atmospheric component of an integrated assessment. The error (or difference
between the predictions of a model and the actual deposition or air quality) results from
the combined effects of errors or limitations in the input data (such as emissions and
meteorological data, where relevant) and errors in the algorithms of the model that
represent physical and chemical processes. The principal objective of model evaluation
for assessment purposes is to estimate the probable magnitude and character of this type
of error. The error in the source term is implicit in the source emissions input data to
the atmospheric model. Attempts are made to segregate and characterize the error in
the field observational data used to evaluate model performance. Proper interpretation
of results is difficult because this error may not be sufficiently quantified and may not
be fully segregated from model and data input error. Errors and limitations in field
observational data used to evaluate the model's performance interfere with estimation of
the model error, usually increasing the apparent error between the observations and the
predictions. Hence, failure to adequately account for this observational error tends to
increase estimates of model error.

The principal causes of uncertainty in modeling the regional transport and
dispersion of atmospheric pollutants are (1) the inherent spatial and temporal variability
in the planetary boundary layer, (2) the stochastic nature of the relationships between
atmospheric state variables and the measurement of meteorological variables used to
approximate atmospheric state, and (3) the general lack of sufficient understanding of
relationships between atmospheric conditions and the physical and chemical mechanisms
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TABLE 1.1 Elements of Uncertainty in an Integrated Acid-Deposition Policy Analysis

1T,

Source Term - Treatment of primary pollutant mass flux to atmosphere, and the economic and societal
cost incurred in modifying that mass flux

Reducible
1. Determination of source strength and temporal/spatial variation Q(x,t)

2. Determination of source physics - dynamic operating parameters (e.g., Ve €], T, [t]) and static
characteristics (e.g., dg, hg)

3. Determination of reduction in source strength and the allocation of that reduction for various
control strategy options AQ(x,t)

4. Determination of control costs
Irreducible

Specification .of the state of anthroposphere (primary human activity) -- the infinite amount of data
that would be necessary to specify the state of the man-made and natural source emission field
uniquely in any given region of space and time cannot be acquired

Atmospheric Term - Treatment of transport, diffusion, transformation, and removal for the prediction
of concentration and deposition fields

Reducible

1. Formulation and parameterization of model equations (e.g., the treatment of horizontal and
vertical dispersion, dry deposition velocities, transformation rates, wet removal rates, vertical
mass exchange rates, and depth of horizontal transport layer uses empirical data to reduce actual
concentration/deposition fields to an analogues set of concentration/deposition fields with finite
degrees of freedom)

2. Numerical technique selected for the solution of governing equations

3. Empirical and theoretical data - The accuracy of measurement methods, and the limitations in the
spatial and temporal resolution of those measurements

e Horizontal winds and precipitation fields

e Vertical profiles of wind, temperature, and humidity

© Cloud spatial characteristics and type

® Vertical profiles of cloud water and hydrometeor concentrations

Irreducible

Specgfic-:inn of the state of the atmosphere —— the infinite amount of data that would be necessary to
specify the state of the atmosphere uniquely in any given region of space and time cannot be acquired

Rgcegc?r Tefn - Ttgntment of deposition, assimilation, transport, diffusion, and physical/chemical/
biological interaction for the prediction of ecological and health response

Reducible

1. Formulation and parameterization of model equations - dose-response functions
2. Solution of governing equations

3. Empirical and theoretical data - limitations to spatial and temporal resolution and accuracy in
measurement and prediction methods %

® Ambient and ionic concentration data and wet-deposition data d i
models and drive ecologic models EASS toRcvaluatel atadupheric

* Ecological and health effects data used to evaluate model performance
4. Determination of economic benefits of control
Irreducible

Specification of the state of the biosphere -- the infinite amou

7 % % nt of
specify the state of the biosphere uniquely in any given region o SO58 At gouldlbe D 1rade ol

f space and time cannot be acquired
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of transport, transformation, scavenging, and deposition. Equally important are inherent
uncertainties in the spatial and temporal distribution of source emissions and in the
observational data for validating model performance, because they are significant
factors to consider when making policy decisions. Acid-deposition assessments that rely
on the outputs from models will require the uncertainty in model predictions to be
characterized and quantified in a form understandable to decision makers. A means to
do just that would be extremely useful (along with other tools such as cost-benefit
analyses, risk assessments, and evaluations of control impacts on fuel markets and on
employment) in providing information necessary for policy formulation.

The principal objective of this study is to develop a flexible methodology to
evaluate model performance that would be useful in helping us to understand the
characteristics and magnitude of the apparent error in model predictions. Because the
characteristics of apparent model error* can be highly complex, with multiple causes, an
approach that encompasses a large and varied set of statistical performance measures
was adopted. This approach recognizes that no single or narrow group of performance
measures (e.g., traditional distributional statisties designed to measure bias, correlation,
and variance) can be used exclusively to uncover all the important characteristics of
model performance. The goal is not necessarily to identify specific weak links in model
or data-base elements so that the weaknesses can be systematically removed. Although
it is true that the identification of weak links may help us better understand and
interpret certain patterns in model performance, our goal is simply to provide
informative measures of how well or poorly a model performs under different observable
conditions and constraints. Then results from future model applications can be qualified
in terms of expected level of error or uncertainty. Such information, if presented in a
form that decision makers can understand and use, can have extremely important
implications for policy formulation and decision making.

Although we have applied the above approach to evaluating the performance of
an atmospheric long-range transport and deposition model, it can be adapted, with
appropriate observational data bases, to source term and receptor term models.

Section 2 of this report describes and gives the basis for selecting the
atmospheric model evaluated in this study. Revisions and improvements (made from
1982 through 1985) and limitations in the model and model data base are described. The
internal model parameter adjustments made for the model performance sensitivity
evaluation are also discussed in Sec. 2. The data bases used as model input and used to
evaluate model output are described in Sec. 3. Section 4 provides the general philosophy
of the model evaluation approach and the specific objectives for evaluating the
performance of the model. The model evaluation methodology, which includes graphical
pattern recognition techniques, distributional parametric statisties, and error
decomposition, is deseribed in detail. The model performance results are given in Sec. 5,
with a summary of findings and recommendations provided in Sec. 6.

*Apparent model error is the error in model predictions associated with model input
data, model parameterization and formulation, and the model evaluation observational
field; it can be seen when comparisons of model predictions with corresponding field
observations are analyzed.
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2 REGIONAL ATMOSPHERIC TRANSMISSION,* DEPOSITION,
AND AIR CONCENTRATION MODEL

The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model was
chosen for this study for a number of reasons. Among them is its capability for rapid,
economical, and efficient computations. This attribute is especially desirable when
model sensitivity computations are required. Also, earlier versions of ASTRAP were
subjects of previous model evaluation and sensitivity studies. These provide a reference
point to measure any model or data-base improvements. Finally, ASTRAP's easy
accessibility (an in-house model) and its availability in the public domain played a major
role in its selection.

2.1 BRIEF DESCRIPTION OF ASTRAP

The ASTRAP model (Shannon 1981) consists of three major subprograms, plus
various preprocessors and postprocessors, generally specific to the model application. In
one subprogram, simulated trajectories are calculated for a grid of initial locations
covering North America with a National Meteorological Center (NMC) spacing (300-375
km). The trajectory subprogram requires time-series plots of transport-wind and
precipitation fields, generally organized seasonally. Ensemble statisties are produced
from trajectory sets from four releases daily at each initial location for the period of
simulation. The mean position and spread of the ensemble trajectories are described by
fitting bivariate normal puffs to the end point ensembles as a function of time since
release (plume age). Similar horizontal distribution functions are ecalculated for
occurrences of wet deposition.

In a second, independent subprogram, synthetic, horizontally uniform, and
diurnally repeatable meteorological data and parameterizations are used in a one-
dimensional, vertical integration in which linear chemical transformation, vertical
diffusion, and dry deposition are treated. Separate sets of calculations are made for
initial emissions within each of the six model layers in the bottom 800 m of the
atmosphere. Simulated releases are made throughout the diurnal cycle, and the results
are averaged. The statistics stored in the vertical integration subprogram, as a function
of plume age and emission layer, include one-dimensional concentrations of primary and
secondary pollutants, total airborne pollutant burden, and dry deposition inecrements.

Since both the trajectory and vertical integration subprograms produce statisties
for normalized or unit emissions, they must be combined with an emission inventory as
well as with each other in order to calculate concentration or deposition values. This is
accomplished in a third subprogram. The concentration and deposition subprogram, for
each horizontal element in an emission inventory, selects the trajectory statisties from
the closest initial location in the trajectory subprogram, adds a bias to correct for any

difference between the source location and the trajectory initial location, and combines

*Transmission = transport and diffusion, chemical transformation,

s 5 and wet and dry
removal (precipitation scavenging, dry-deposition physics, ete.).
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them with the one-dimensional statistics for the appropriate emission layer. For
concentrations, the two-dimensional puffs are combined with the one-dimensional
surface concentrations of primary and secondary pollutants. For dry deposition, the
two-dimensional puffs are combined with the one-dimensional dry-deposition increments
for primary and secondary pollutants and converted to equivalent sulfur or nitrogen, as
appropriate. For wet deposition, the two-dimensional puffs are combined with the one-
dimensional airborne budgets, already converted to equivalent sulfur or nitrogen. The
two-dimensional puffs are scaled by the emission rate.

The atmospheric concentrations predicted by the ASTRAP model correspond to
an arithmetic average over the period of simulation, not a geometric average. While the
nature of the continuous bivariate normal density functions fitted to trajectory end-point
or wet-deposition ensembles is such that predicted values change even if the location
shifts only slightly (provided enough significant digits are used in calculations), the real
spatial resolution of ASTRAP simulations of concentrations and deposition is a
complicated funetion of the resolutions of the emission inventory, the wind field, and the
precipitation field. While the resolution of the wind field is coarsest (grid spacing
300-375 km), wind variability accounts for only a portion of the variance in simulations.
Although this is only argued heuristically, we assume that the resolution of the ASTRAP
model is somewhere between that of the wind field and that of the precipitation and
emissions fields (typically 100-125 km). For simulations with exactly located point
sources rather than an emissions grid, resolution would be somewhat better.

The ASTRAP model predicts deposition rather than concentration in
precipitation, although precipitation-weighted concentration can be estimated by
dividing the deposition values by the precipitation totals for the period of simulation. If
the precipitation totals are obtained from the time series of precipitation analyses used
in model calculations, the method is mass consistent. If the precipitation totals are
taken from observations at monitoring sites, to the extent that the point concentration is
used to imply an areal average, some mass inconsistencies may arise.

»

2.2 IMPROVEMENT IN ASTRAP MODEL AND MODEL DATA BASES

It would be useful to look at the evolution of the ASTRAP model over the past
several years to identify improvements in model components. A convenient reference
point from which to do this is the model application and performance evaluation study
conducted under the U.S./Canada Memorandum of Intent (MOI) on Transboundary Air
Pollution (Schiermeier and Misra 1982).

Model evaluation results for eight regional-scale sulfur transport and deposition
models developed by U.S. and Canadian scientists were reported under the MOI study in
November 1982. The study used a standardized set of 1978 emissions and meteorological
data to compute monthly (January and July) ambient sulfate (SOZ) and sulfur dioxide
(S09) concentrations at 54 SURE network sites (Electric Power Research Institute's
Sulfate Regional Experiment) and wet sulfur deposition at 3 U.S. MAP3S sites (Multistate
Atmospheric Power Production Pollution Study) and 10 CANSAP sites (Canadian Network
for Sampling Precipitation). The ASTRAP model was one of the eight models evaluated
during the MOI work.
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Significant improvements have been made to the data bases and to the empirical
internal parameterization of ASTRAP since the MOI study. They are summarized here.

2.2.1 Processing of Source Emission Fields

Emission estimates have changed periodically, particularly in the western states.
In some of the early ASTRAP MOI work, the emissions for each state or province were
represented by only a single virtual source. In this report, not only is a 100- to 125-km
emission grid used in all cases, but also the virtual source for each cell is the emission-
weighted centroid rather than the geometrical center as in the other MOI work, and the
initial spread is calculated rather than assumed. These changes are probably most
helpful when receptors are near major source regions, as Whiteface Mountain is near
Montreal. In addition, the assumption of a distribution in the ambient wind when
caleulating effective plume height now causes the emission gridding to be much less
sensitive to small changes in stack parameters than was previously the case.

2.2.2 Processing of Wind and Precipitation Fields

Wind and precipitation analyses (January and July 1978) for the MOI work were
performed by the Canadian Atmospheric Environment Service (AES). The analysis and
preprocessing of meteorological data for this study were done by the University of
Michigan (UM) and Argonne National Laboratory (ANL). This work is deseribed in more
detail in Sec. 3.2 of this report. The AES wind data provided for the MOI analysis were
probably more reliable than the UM analysis data when applied to data-sparse areas, such
as over the oceans, since the UM analysis was a by-product of a numerical weather
analysis. A decision was made to modify ASTRAP to use the UM data instead of the AES
data, since a longer period of record, eventually 24 years, was to become available. Only
two full years of data (1980 and 1981) were available through AES. Although a detailed
comparison of the AES and UM analysis methods was not made, it was felt that the
quality obtained from both data bases was similar. However, no direct comparisons with
ASTRAP were made to confirm that the two data sets produced comparable results,
since the ASTRAP version compatible with the UM data incorporated several years of
gradual model improvement.

2.2.3 Model Empirical Parameterization* and Theoretical Formulation

The basic structure of the ASTRAP model has remained the same since the MOI
work. However, modifications have occurred to incorporate data in the ASTRAP
parameterization schemes from more recent field experiments. These model
modifications are briefly described here.

*The term parameterization refers to a simplified, empirally based, functional form to
represent physical and chemical atmospheric processes in the model.
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1. Dry-Deposition Parameterization. Improved estimates of dry
sulfate deposition were incorporated from the work of Wesely and
Shannon (1984) and Wesely et al. (1985). The diurnal and seasonal
patterns in sulfate deposition velocities are approximately 50%
smaller than previous values. The deposition velocities for SO,
remain unchanged.

2. Wet Removal Parameterization. Modifications were made to
coefficients to account for different methods of analyzing
precipitation fields. The AES precipitation data had only 12-hour
resolution; the wet removal algorithm assumed that all of that
precipitation fell in one of the two 6-hour periods, and thus every
other time step was, in effect, dry. No such assumption is
necessary with the UM data. The convective transfer of pollutant
mass to the free troposphere in precipitation processes was also
adjusted from an assumed 20% venting to a 50% venting (i.e., 50%
of the pollutant mass removed from the mixed layer was
transferred to the free troposphere, where it was subject to
subsequent wet removal but not dry removal). This adjustment
seems reasonable in light of some recent data reported in the
literature. Isaacs (1983) has computed a vertical transport ratio
for various cloud types and frequency of occurrence over eastern
Canada. From this formulation scheme, he estimates that on the
average, 50% of sub-cloud air is pumped through its base each hour
during the summer and 20% during the winter. However, no
estimate on the fraction of vertical transport out of the mixed
layer was given. Liu and McAfee (1984), looking at Ra-222
vertical distributions, concluded that 55% of continental Ra-222
during summer months and a much smaller amount during other
seasons was transported out of the mixed layer:

3. Trajectory and Vertical Integration Calculations. ASTRAP now
continues budget calculations to seven days after release rather
than the previous five days.

2.3 MODEL AND MODEL DATA-BASE LIMITATION

Numerous factors contribute to errors or uncertainty in model predictions.
These errors may originate from limitations in the input data used by the model, from
limitations in the model's structural components, or from random, unpredictable
fluctuations in the atmosphere.

Some of the key limitations contributing to uncertainty in the model and data
base of this study are summarized here.
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Assumption of single-layer-averaged horizontal wind field.
Vertical averaging of wind velocity can induce computational
errors in transport and dispersion. These errors are caused by an
averaging of wind shear results, which can affect some layers more
than others. The errors should be most significant to short-term
(<24-hour averages) predictions, and should be less important to
long-term averages (23-month averages).

Assumption of linear chemistry. The assumption of first-order-
linear kinetics may prove to be justified over seasonal periods, but
aqueous-phase chemistry and convective cloud physics can have an
important nonlinear influence on SOy conversion chemistry over
shorter time intervals (hours to several days). However, as the
spatial and temporal averaging region increases, this and other
nonlinear influences should play a less significant role.

Oversimplification of wet removal processes. Various
parameterization schemes are used for modeling wet removal as a
function of precipitation rate and a characteristic scavenging
coefficient. Precipitation rates can be highly variable both
spatially and temporally, especially during convective storms.
Most model parameterization schemes do not account for the
variation of a scavenging coefficient with (1) season, (2) size
distribution of hydrometeors, (3) effective area of scavenged
species, (4) snow type, and (5) storm type, partly for reasons of
computational practicality and partly because many of these data
are not routinely available over continental scales. These
simplifications can distort spatial patterns in wet-deposition fields
and force positive or negative bias in estimates of the magnitude
of the deposition amounts.

Oversimplification of dry-removal processes. Dry-deposition
schemes lack details on the spatial and temporal variations in
deposition rates. (ASTRAP includes typical seasonal and diurnal
variations in dry-deposition velocities but assumes these patterns
are spatially uniform and repeated each day.) The influences of
atmospheric stability and particle size are not explicitly accounted
for in the parameterization schemes. Distortions in the spatial
patterns and amounts of dry deposition, similar to those of wet
deposition, can occur with these parameterization simplifications.

Limited or nontreatment of vertical atmospheric motions. Large
convective storms ean play a significant role in the redistribution
of pollutants within the mixed layer and the venting of pollutants
through the mixed layer. Uplift over frontal surfaces can elevate
air initially in the mixed layer over wide regions. Not accounting
for the redistribution from these and smaller systems can produce
errors in (1) the horizontal pollutant transport, (2) the degree of
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pollutant dilution, and (3) the amount of pollutants available for
wet and dry removal. The ASTRAP model has a venting
coefficient incorporated within its wet-removal parameterization
but does not address the reentrainment of vented material back
into the mixed layer.

6. Omission of orographic effects. Rough terrain and large water
bodies can have a substantial influence on mesoscale meteorology
and, therefore, on the transport, dilution, and removal of
pollutants from the atmosphere. The wind and precipitation
analysis techniques take orographic effects into account only
implicitly and only to a small degree. Not accounting for terrain
effects can produce errors in predicted spatial and temporal
patterns of atmospheric concentrations and wet deposition.

7. Spatial and temporal resolution of wind and precipitation
measurements. Wind data are derived from twice-daily upper-air
observations over a sparse network (300- to 400-km spacing) of
measurement stations. Precipitation observations use a denser
network, but precipitation is also more variable. A lack of better
meteorological resolution might have little effect on many long-
term simulations, but errors related to geographic effects such as
lake or seabreeze regions or precipitation gradients in mountainous
areas will probably create bias.

8. Accuracy of emission fields. The nature of potential errors in
preparing emission inventories is briefly discussed in See. 3.1.

2.4 MODEL ADJUSTMENTS FOR PERFORMANCE SENSITIVITY EVALUATION
AND SOURCE-RECEPTOR UNCERTAINTY ANALYSIS

Except for highly statistical models that do not require temporally and spatially
varying meteorological fields, model sensitivity and uncertainty studies in which all
possible combinations of model parameterizations and modeling choices are tested are
not computationally feasible. This is particularly evident when one considers that most
parameterizations could span a continuous range rather than take only a few discrete
values, and the sensitivity might vary from one year to the next. In these studies we
have focused on four parameterizations, with the selections based upon commonality
with the structure of other models, likelihood of eventual testing with field data, and
general importance in deposition caleulations. The parameterizations examined are the
dry-deposition velocities for SO, dry-deposition velocities for SOZ, linear rate of
transformation of SOZ to SOZ, and bulk wet sulfur removal coefficient. The dry-
deposition velocity and transformation parameterizations are still given seasonal and
diurnal patterns of variation, but the patterns are scaled to result in different average
values. Similarly, the variation of the wet-removal coefficient during winter in northern
latitudes is maintained, but the coefficient is scaled by the same factor used in other
regions and seasons.
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Varying the parameterizations tested was accomplished by scaling the seasonal
and diurnal patterns and mean values by 0.5 and 2.0. Combinations of high, low, and base
cases for the four parameterizations were tested, except for those that were deemed
illogical (such as high soi dry deposition and low SO, dry deposition, which in ASTRAP
would result in a dry-deposition veloeity for SO, that was only half that for 80y4). The
average value and the extremes of the diurnal and seasonal patterns of the
parameterizations whose sensitivities are studied in this report are given in Table 2.1.

TABLE 2.1 Base-Case Average and Range of ASTRAP

Parameterizations
Parameter Season Average High Low
S0, dry-deposition Winter 0.30 0.70 0.10
ve%ocitya (cm/s) Spring 0.40 0.80 0.10
Summer 0.45 0.90 0.10
Autumn 0.31 0.65 0.10
SOZ dry-deposition Winter 0.12 0.25 0.05
velocity? (cm/s) Spring 0.20 0.40 0.05
Summer 0.23 0.45 0.05
Autumn 0.16 0.36 0.05
S0, to SOZ trans- Winter 0.4 1.0 ()t
formation rate? (%/hr) Spring 1.2 3.0 0.3
Summer 1.6 4.0 0.4
Autumn 0.8 2.0 0.2
S wet-deposition Winter NAP 1.0 0.5
coefficient (C)€ Spring i) 1.0 1.0
Summer 1.0 1.0 1.0
Autumn 130 1.0 1.0

3These parameters vary diurnally in the ASTRAP model.
The graphs describing these variations, along with
their algorithms, can be found in Shannon (1985).

bNA = not applicable.

c cp0-5

Deposition = min
0.50

P = precipitation (cm/6 hr).
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In a linear model such as ASTRAP in which plumes and deposition patterns from
multiple sources are superposed, the sensitivity in the modeled concentrations and
deposition from multiple sources is relatively less than for typical single sources. For a
fixed emission rate, any parameterization variation that reduces deposition in one area
must increase deposition in some other area; thus, many perturbations in individual
patterns "average out" when the patterns from many sources are superposed. The
observations used to evaluate the uncertainties of model simulations combine the
contributions from all sources, although some sources are more heavily affected by
isolated major sources than are others. A large portion of model uncertainty must be
associated with possible nonlinearities when there is an imbalance of SO, and oxidizing
species, but these nonlinearities cannot be examined in a linear model.
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3 MODEL INPUT AND EVALUATION DATA BASES

Three major data bases were selected, analyzed, and screened for evaluating the
performance of the ASTRAP model. These included SOy emissions inventory,
meteorological and ambient SOy and SOy, and wet sulfur precipitation chemistry data.
The same data bases were used for the parametric statistical error analysis and the
Bayesian uncertainty analysis of ASTRAP predictions. A description and analysis of
these data bases follow.

3.1 SOURCE EMISSIONS DATA

At the time the data-base needs were set for this project, Version 2.0 of the
NAPAP emissions inventory was available. The NAPAP SO, inventory consisted of data
on both point and area source emissions over the continental United States. A point
source was defined as any stationary source emitting at least 100 tons per year of any of
the five primary-criteria pollutants with appropriate stack parameters needed to
determine the effective point source height. These data were available on a stack-by-
stack basis, and included coordinates, height, diameter, effluent temperature, flow rate,
and annual emission rates. Seasonal emissions were computed from a monthly emissions
inventory derived from the 1980 NAPAP inventory and source-category fuel-use
patterns. All emission sources not fitting the point source definition were treated as
area sources. These sources were primarily institutional, commercial, and residential
fuel combustion sources; source industrial processes or space heating units were also
included. Over 90% of the 1980 and 1981 SO2 emissions in the United States came from
point sources, with a majority of these emissions from the electrie utility sector.

The Canadian SO, emission inventory came from colleagues in the Canadian
AES. Canadian 802 emissions come primarily from metal smelters, which exhibit little
regular seasonal dependencies. Approximately 1% to 2% of the annual U.S. and Canadian
sulfur emission was assumed to be primary SOZ.

For many applications of the ASTRAP model, particularly those involving source-
receptor matrices, it is important to have emissions spatially resolved more finely (i.e.,
to areas smaller than large geopolitical entities such as states or provinces). This is
particularly true for predictions at monitoring sites or sensitive receptors lying within a
source region (such as the Adirondacks in New York); unless the substate horizontal and
vertical resolutions of emissions are known or estimable, all the emissions of a state or
province are normally represented by only a single virtual source, which can lead to quite
misleading near-source results. Knowledge of the horizontal source distribution for a
distant upwind state (such as Missouri in the case of the Adirondacks) is perhaps of less
importance, but even then good information on effective stack heights is vital because
higher initial plumes result in less near-source dry deposition, thus leaving more pollutant
remaining for downstream deposition, particularly in the wet form.

Temporal distributions of emissions, in particular seasonal patterns, are also
important for modeling; overall sulfur oxides emissions in winter appear to be about 20%
higher than for spring or fall. The overall secondary peak in SO, emissions generally
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occurs in the summer. However, a winter or summer peak in SO, emissions will depend
on the region (i.e., distribution of utility vs. nonutility source, fuel use) and on climate
variations. The seasonal variations can be even larger for individual states, particularly
those in which the combustion of fuel oil for home heating is important. The monthly
emission inventories of Knudson (1985) provide excellent information on the seasonal
variation of utility emissions (which in many cases do not vary greatly) but unfortunately
little reliable information on the variation of miscellaneous sources, which would include
residential space heating.

The emission preprocessor for ASTRAP grids the seasonal emissions from each
state and province separately. The spatial resolution is the same in all cases; 100-125 km
in the horizontal and 6 layers to 800 m in the vertical. It might appear that for a cell
that overlapped geopolitical source regions (for example, the Kentucky-Ohio border), the
Kentucky sources and the Ohio sources in the cell would have the same virtual source
location. This is not the case, however. The mass-weighted emission centroid and
Cartesian standard deviations are calculated for each state in turn; the overall emission
grid thus has two virtual sources within that cell. For a medium-sized state such as
Ohio, the horizontal distribution of emissions might be represented by 12 to 16 virtual
sources. The vertical gridding is accomplished by using climatological fields of wind and
temperature and a standard plume rise formula (Briggs 1971) to locate the mean
effective height of the plume and then estimating an initial spread around that height by
varying the wind speed by a factor of two. This procedure is done to account for the fact
that the wind speed and consequent plume rise vary with actual meteorological
conditions and is not an attempt to account for initial dispersion in the vertical, which is
treated numerically in ASTRAP.

An emission inventory for 1980, roughly corresponding to NAPAP Version 2.0,
was initially postprocessed by C. Benkovitz at Brookhaven National Laboratory (BNL) and
then further processed to produce the emissions input for ASTRAP. For simulations
specific to other time periods, scaling factors that related 1981 seasonal emissions
(totaled statewide) to 1980 seasonal emissions and that reldted January, April, July, and
October 1978 emissions to seasonal 1980 emissions (scaled to monthly averages) were
developed from Knudson (1985). Some additional miscellaneous emission data sources for
Canadian emissions were also applied for the SURE intensive periods. Except for some
isolated Canadian point sources, all scaling factors were related to state or province
totals and were applied to each source within the state or each source not individually
treated in the province in the NAPAP-2.0/BNL/ANL gridded inventory.

The map in Fig 3.1 shows the source-receptor grid used for model performance
evaluation. The eastern United States and southeastern Canada are divided into ten
regions identified by Roman numerals in the figure. Each region is divided into four
subregions of NMC dimensions (381 x 381 km at 60°N, 300-375 km over our latitudes of
interest), and each subregion is divided into nine cells. Emissions were aggregated as
appropriate. Tabulation of source emissions by season on a regional and subregional basis
is given in App. C, Table C.1. Emissions outside the source-receptor grid area are not in
Table C.1. However, these emissions (nongrid emissions) are shown in Fig. 3.2 for
comparison with emissions from each of the ten regions. Regions II, IIl, and VI, the
regions with the largest coal utilization, exhibit the largest seasonal variations. These
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regions also have the majority of coal-fired power-plant capacity. Interannual emission
variations between 1980 and 1981 were insignificant. This is more clearly shown by
plotting like seasons for the two-year studies on the same plot. Figures C.2 through C.5
illustrate the very small change in emissions across the years for the same seasons.

The distribution of emissions across regions by season and effective plume height
is illustrated in Fig. 3.3. Three levels are depicted: low (0-200 m), medium (200-400 m),
and high (400-800 m). The actual emission totals used in ASTRAP, by season and
emission level, are given in App. C, Table C.2. Low-level emissions in Regions I, IV, and
VII though X are greatest during the winter because of the prominence of residential,
institutional, and commercial space heating (a low-level source) during the winter season.

Errors in estimating emissions arise from multiple causes: the raw data are
gathered at many sources and initially compiled by state and local government agencies
with disparate quality-control procedures; the sulfur content of fuel, particularly coal,
can vary more rapidly than is revealed by intermittent sampling; emission factors in
many instances are not well determined; and emissions are specific to the operating
characteristies of individual boilers. The official or NAPAP inventory is periodically
corrected and improved as better information is gained, but the estimated overall
inventory for 1980, particularly for SO,, has changed little in recent iterations.

In evaluations of regional sulfur atmospheric concentration and deposition
models, it is sometimes assumed that diserepancies between observations and predictions
(other than subgrid effects that can be minimized by combining and averaging point
concentrations or deposition within a region) are primarily a result of model errors or
inadequacies. That assumption can be misleading. The model is, in effect, a theoretical
numerical relationship between emissions and deposition or concentration. Emissions are
an outside, independent input, although the processing of the emission in a grid is,
broadly speaking, a component of the process of model application. It is easy to show the
sensitivity of a linear model to emissions uncertainty for a single source (i.e., x%
uncertainty in the emission rate causes x% uncertainty in corresponding concentrations
or deposition), but the response to a comprehensive emission inventory containing errors
is more complex. One might assume that the errors for different sources were
uncorrelated and would thus tend to cancel each other in effects on combined deposition
or concentration, but that is an oversimplification, because some of the errors result
from inadequate emission factors, each of which might be applied to a number of sources
of similar type. In addition, since the quality control of some state environmental
agencies is better than that of others, it is not likely that emissions errors are spatially
homogeneous. However, NAPAP (interim assessment) has recently estimated the overall
level of uncertainty in the source emission inventory. The estimate indicates that the
level of uncertainty in NAPAP 1980 seasonal S0, emissions, taking a weighted average
over all source categories and accounting for the uncertainty introduced by use of a
seasonal allocation factor, is +13% (NAPAP 1987a).

3.2 METEOROLOGICAL DATA

The meteorological data used in these ASTRAP simulations were initially
processed under the guidance of P.Samson at the University of Michigan. There,
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horizontal wind fields over the United States and Canada were produced for six 500-m
layers up to 3000 m (mean sea level), at intervals of 12 hours, for a grid of NMC spacing
(381 km at 60° N, increasing with latitude). The method of analysis was a form of
inverse distance-squared weighting of upper air sounding data, from the rawinsonde
networks of the United States and Canada. Hourly precipitation fields were produced on
a grid with 1/3 NMC spacing, by averaging the observations (including zeros) from
reporting stations within each grid cell.

Further processing of the wind and precipitation fields was necessary before
their use as input to ASTRAP. The basic trajectory time step in ASTRAP is six hours;
thus, sets of six hourly precipitation fields were totaled and the wind fields were
temporally interpolated. The multi-layer winds were combined into a single transport
layer for ASTRAP by averaging the wind fields through the first three reported layers for
each grid point for spring and summer, the first two and one-half layers for autumn, and
the first two layers for winter. The ASTRAP transport layer thus corresponded to a
depth above ground level of 1500 m in spring and summer, 1250 m in autumn, and 1000 m
in winter. The wind and precipitation fields were extrapolated and interpolated spatially
so that there would be no missing values in rectangular grids. The technique used was a
gradually expanding search around each missing value until one or more analyzed values
were included, and then inverse distance-squared weighting. The locations of initially
missing analyzed values of wind and precipitation were concentrated in northern Canada
and in oceanic areas.

The wind and precipitation fields were then organized on magnetic tape in three-
month data sets, with winter being December through February, spring being March
through May, summer being June through August, and autumn being September through
November. In the simulations in this report, meteorological data for the period 1976
through 1981 were used. Since meteorological data for December 1975 were not
available at the time, winter 1976 trajectories were calculated for two months;
cumulative deposition was scaled to a three-month total in later simulations. Data for
May 1978 were also missing; thus, spring 1978 was also a two-month simulation with
subsequent scaling of deposition. Wind and precipitation data for December 1981 were
not used since it was considered a winter 1982 month (observational data were only
available for seasons in 1980 and 1981). For simulations of the four one-month SURE
intensives that took place during 1978, the quarterly meteorological data sets were used
by skipping records until the fields corresponding to the dates and times of the beginning
of the SURE intensives were reached, and then caleulating trajectories and wet
deposition statisties until fields corresponding to the dates and times of the ends of the
SURE intensives were reached. The SURE intensive periods are identified in Sec. 3.3.1
of this report.

3.3 FIELD OBSERVATIONS OF PREDICTED VARIABLES

The data base used to compare against model predictions was a combination of
atmospheric concentrations of SO, and SO, and wet soz deposition. Data collected over
a three-year period (1978, 1980, and 1981), were considered in this study. These data
were screened for completeness, and monthly and seasonal averages were computed for
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statistical comparison with ASTRAP predictions. The data bases and screening
procedures are described in the following sections.

3.3.1 Monthly Mean Air Concentration and Monthly Wet Deposition Data

The air-concentration measurements used to evaluate model performance came
from SURE. Measurements were obtained from 54 ground-based air-quality stations: 9
Class I sites and 45 Class II sites. The Class II sites operated on intermittent schedules
during seasonally representative sampling months (six intensive periods) beginning in
August of 1977 and ending in October of 1978 (continuous 24-hour samples were collected
during the intensive periods). The Class I sites operated on continuous schedules from
August 1977 through June 1979 and had more stringent siting requirements than the Class
II sites (continuous 3-hour samples were collected during the Class I sampling period).
More complete descriptions of the SURE data base can be found in the literature
(Mueller and Watson 1981; Hidy and Mueller 1981; EPRI 1979, 1982, and 1983). Four
months of data collected in 1978 were available for use in our study. The sampling
periods included January 10 through February 9 (31 days of winter samples), April 3
through May 2 (30 days of spring samples), July 1 through July 31 (31 days of summer
samples), and October 1 through October 31 (31 days of fall samples). Monthly averages
were computed for the 3-hour samples (Class I sites) and the 24-hour samples (Class II
sites).

The locations of these sites are shown in Fig. 3.4. The site name, coordinates,
and average monthly SOZ concentrations (January, April, July, and October) are given in
App. D, Table D.1. These data, along with the SO, data (see App. D, Table D.2),
obtained from EPRI in February 1985, are in the most recent version of the SURE data
base. They were used in preference to an earlier version of the data used in the MOI
work, because some additional hourly data for computation of monthly averages were
available and because some of the site data were missing in the MOI data base. A
75%-data-capture screening criterion was used to determine representative monthly
averages. (The percent of data capture is computed by dividing the number of valid data
points obtained by the total number of possible data points during the sampling period.
At least 23 valid days were required to compute a valid monthly mean.) The data-
capture values for each site are given in App. D, Table D.1. The cumulative frequency
plots and histograms prepared to aid the data sereening process are contained in App. D.

Based on a 75%-data-capture cri- TABLE 3.1 Distribution of Model
terion, the distribution of sites sereened Evaluation Air-Concentration
for model evaluation is given in Table 3.1. Monitoring Sites by Month

In addition to the measured air
concentrations of SOj and SO, from the ; : 9
SURE network in 1978, a limited amount Month Ambient SO, Ambient SO,
of data on wet sulfur deposition (as
equivalent soz) was also available for

i, Januar 41 30
comparison with ASTRAP predictions. April o 38 30
Most of the monitoring sites (eight) were  jy1y 37 46
from the Canadian CANSAP network October 40 41

(sampled monthly), but data were also
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Sites in 1978
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available from three MAP3S event sites. All 11 sites operated for only one month, July
1978. The locations of these sites are also shown in Fig. 3.4.

3.3.2 Seasonal Wet-Deposition and Ionic Concentration Data

Two years of information on wet-deposition chemistry collected from seven
networks operating over eastern North America were available at the time our study was
initiated. These data came from the ADS, the official repository of North America
precipitation chemistry measurements. This system provides a convenient computer data
base for retrieval of statistical summaries of deposition monitoring data. An additional
four years of data from 1982 through 1985 have just recently become available. Data
were collected on an event, daily, weekly, or monthly sampling protocol. The deposition
amounts were derived from observations in seven networks: (1) the National
Atmospheric Deposition Program (NADP), (2) Utility Acid Precipitation Study Program
(UAPSP), (3) MAP3S, (4) Air and Precipitation Monitoring Network (APN), (5) CANSAP,
(6) Acid Precipitation in Ontario Study-Daily Network (APIOS-D), and (7) Acid
Precipitation in Ontario Study-Cumulative Network (APIOS-C). Sampling protocols were
event for MAP3S; daily for UAPSP, APIOS-D, and APN; weekly for NADP; monthly for
CANSAP; and 28-day for APIOS-C.

The locations of the wet deposition sampling sites for the eight seasons of
sampling, 1980 and 1982, are shown in Fig 3.5. Sites are numbered sequentially on a grid-
by-grid basis. Those sites identified with an asterisk indicate co-located sampling.
Table D.3, App. D, gives the site identifiers and names, coordinates, site completeness
rating (discussed below), and wet SOZ deposition fluxes. The same table for
precipitation-weighted ionie concentrations (PWICs) is given in App. D, Table D.4, along
with a sample calculation for computing PWIC.

To ensure a meaningful comparison between the model predictions and the
observational field, a data sereening procedure was instituted. The quality of the data
was based on parameters measuring the completeness with which the sampling data were
collected. Five different measures were used to determine data completeness. These
parameters are defined in Table 3.2, along with the criteria used to rate or classify the
samples. Three levels of completeness were assigned: Class A was given to sites with
the highest rating, Class D to sites with the lowest rating. In addition to completeness,
the degree to which a site was representative of its region was also considered as a
sereening criterion. Because of the limited amount of information on the effects of local
sources on precipitation chemistry and the difficulty of obtaining sufficient data on
sampling site characteristies that might influence the regional representativeness of the
samples, data screening was based solely on data completeness.*

*Data screening based on a less stringent data-completeness criterion (Class B sites not
sereened) and on a regional representativeness criterion was used for the International
Sulfur Deposition Model Evaluation (ISDME) study (Clark et al. 1987a). A comparison
with our study shows that we screened fewer sites for each season in 1980. The
distribution of sites in the ISDME model evaluation data base are as follows: winter 38,
spring 46, summer 45, and autumn 42.
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Based upon the completeness screening criteria given in Table 3.2, the
distributions of observational sites for each season, for each year and for both years
combined, are given in Table 3.3. The ASTRAP model performance evaluation was based
on comparing model predictions to Class-A-rated monitoring sites. The number of sites
passing the screening procedure ranged from 25 in winter 1980 to 70 in summer 1981.
The percentage of data sereened from the seasonal comparisons with ASTRAP ranged
from 44% in summer 1981 to 71% in winter 1981.

3.4 BACKGROUND ADJUSTMENTS

Estimates of background concentrations of pollutant species in air masses that
will later pass over man-made pollutant source areas aré necessary in the regional-scale

TABLE 3.2 Wet Sulfate Sampling Data Completeness Screening Criteria (%)

Data Screening Class?

Variable A B (4
PCE >800 (250)¢  260° (230)¢  250° (230)°
PTPVS 290 280 260
PCL 295 290 290
PVSL 280 280 260
PSMPV 280 280 260
Definitions of Screening Variables Formula ADS Variable Name
PCE = Percent collection efficiency Total sample volume (converted to depth) S0,-PCE
Total precipitation depth
»
PTPVS = Percent total precipitation Precip. depth assoc. with valid samples S0,-PTP
associated with valid sample Total precipitation depth measurement
during valid precipitation coverage
PCL = Percent precipitation coverage Percent of the annual period for which 50, -PPCL
length valid precipitation coverage (in days)
is available
PVSL = Percent valid sample length Percent of the annual period (in days) 50,-PVC
when valid sampling occurs
PSMPV = Percent of samples with Fraction of the sampling periods during SOA-VSHP

measured precipitation
that are valid

which precipitation is known to oceur
that resulted in valid precipitation
chemistry data

80pgervations that do not meet any of the above criteria are assigned to Class D.

byaDp, MAP3S, and UAPSP networks (same percentage,

Cyinter PCE for CANSAP, APN, and APIOS networks.

as indicated, for all seasons).
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TABLE 3.3 Number of Sites that Meet Screening

Criteria
Data Screening Class

Season Year A B (o] D Total
Winter 1980 25 16 4 22 67
Spring 1980 29 16 5 25 75
Summer 1980 38 12 6 28 84
Autumn 1980 _47 25 EARG 121
Total 1980 139 69 21 118 347
Winter 1981 37 18 24 37 116
Spring 1981 57 17 27 26 1237
Summer 1981 70 20 16 18 124
Autumn 1981 _66 23 26 15 130
Total 1981 230 78 93 96 497
Total 1980/ 369 147 114 214 844

products. Not properly accounting for these background levels can result in systematic
underprediction of observed concentration levels. Recognizing this, Workgroup 2
investigators during the MOI model innercomparison and evaluation work (MOI 1982)
estimated an annual background level of 2 kg SOZ/ha, which was used to adjust
predictions of three of the eight models evaluated in the study (some models considered
emissions over a wider area, and thus the definition of "background" varied). However,
no data documentation was provided in support of the level chosen. (The Canadian
modelers felt that a background adjustment to their predictions was necessary and that
the 2 kg SOZ/ha was a reasonable level to use.)

Nonanthropogenie (natural), uninventoried anthropogenic (man-made), and
transported intercontinental (natural and man-made) sources of sulfur emissions
contribute to continental background concentration and deposition flux levels that cannot
be directly accounted for in regional scale model predictions. To minimize any
systematic bias in comparing ASTRAP model predictions with observations, a procedure
was developed to estimate a representative background level to be added to the model
predictions. Three steps were followed: (1) identification and determination of the
relative magnitude and spatial distribution of sources that might contribute to
background levels, (2) examination of the spatial distribution of inventoried sources
relative to natural sources (to determine if downwind sampling sites can be used as
representative continental background sites), and (3) consideration of upwind sites
outside the inventoried source region for establishing a representative background level.
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Natural background emissions are produced by both biogenic and nonbiogenic
sources. Biogenic sulfur emissions come from terrestrial (soils, erops, and natural
vegetation) and oceanic (tidal and innertidal areas and nutrient-rich areas) regions where
vegetative and microbial processes are active. Nonbiogenic sulfur emissions come
primarily from geothermal sources such as voleanoes. On a nationwide basis, terrestrial
sulfur emissions in the continental United States are an estimated 200,000 metric tons
per year (t/yr) (NAPAP 1985). Oceanic emissions reaching the continental United States
are nearly equivalent to terrestrial emissions at around 280,000 t/yr. Because of the
relatively large spatial and temporal inhomogeneity of geothermal emissions, a
representative estimate of the magnitude of these emissions is difficult to give.
However, measurements taken during the Mt. St. Helen eruption in the spring of 1980
indicate that it contributed a smaller amount of sulfur to the atmosphere (e.g., ~80 t of
S0, with SOjt concentrations averaging 110 ppm over a 16-day period; Stoiber et al.
1980) than other volcanic eruptions (e.g., Irazu, Cost Rica, 1963; Pacaya, Guatemala,
1965) and biogenic sources.

The relative spatial distribution of natural biogenic sources and man-made sulfur
emission sources is shown in Fig 3.6. The data show that the range of emission densities
for anthropogenic sources are approximately 300 to 1,000 times the corresponding range
of emission densities for natural sources. Due to the spatial distribution of these sources
and their relative magnitudes, representative natural sulfur background levels
determined from samples located in North America would not be feasible, at least within
the scope of this project. (It is too difficult to partition contributions from natural
versus man-made sources without techniques such as a detailed elemental sample
analysis based upon principal components.) Therefore, data collected from upwind
monitoring sites in the global trends network (GTN) west of the source inventory region
were examined to determine representative background level(s). The GTN provided a
data base from sampling sites that were not near continental anthropogenic and
nonanthropogenie sources.

The GTN has a total of twelve sites worldwide where precipitation chemistry
samples are currently being collected. Figure 3.7 shows the location of these sites, in
addition to three sites that have been closed (early 1981 and 1983, and late 1982).* The
sites identified as new were started after 1981, the period that followed the data base
used for our comparisons. Average annual SOZ concentration levels measured at nine of
the twelve currently operating GTN sites, along with the eastern North America average
annual level, are given in Fig 3.8. A sufficient period of record for the three new
stations (Kruger National Park, Cape Point, and Torres) was not available at the time of
preparation of this report. The data show that the annual average concentration of SO;
over the high-density source region of eastern North America is over 10 times greater
than that over remote regions of the world.

*Background on the evolution of the U.S. precipitation chemistry monitoring program
from the establishment of U.S.-world meteorological organization baseline sites (1972)
to the establishment of GTN (1982) can be found in Dayan et al. (1985).
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FIGURE 3.7 Global Trend Network Sites (Dayan et al. 1985)

Five GTN sites, three in the Pacific and two in Alaska (see Fig. 3.7), were
selected as being the most representative for approximating background levels in North
America. Because of the relatively small amounts of precipitation at Point Barrow,
Alaska, data from this site were not considered; and because of its inland loeation in
central Alaska (70 km from Fairbanks), the data collected at Poker Flat were also not
considered. That left measurements at three sites -—- Mauna Loa, Hawaii; American
Samoa; and the North Central Pacific — for determination of a background level.
Seasonal variations of SOi ionic concent_rations at each of these sites were not
significant. The annual average of 6 neq SOy/liter was determined to be a representative
background level. This concentration was added to the seasonal wet SO predictions at
each sampling site (subsequent to adjustment by seasonal precipitation amount at each
site). The site-specific background values are given in Table D.3 in App. D.
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4 OBJECTIVES AND METHODS FOR MODEL PERFORMANCE EVALUATION

Users need to know that models can be applied with reasonable confidence to
predict changes in deposition and/or ambient concentration that are associated with
changes in meteorological conditions and source emissions. This confidence is of critical
importance if models are to be used for establishing source-receptor relationships under
current emission control conditions and for evaluating the effectiveness of any future
options for emission-control strategy. Error evaluation and uncertainty quantification
help establish confidence in the use of models for policy formulation.

Error, as used here, is the difference between true values and corresponding
predictions. Apparent error is the difference between observed values and corresponding
predictions. Thus, apparent error includes the effect of errors in observations (defined as
the difference between true values and measurements). Uncertainty, applied to a model,
generally pertains to the range of expected error between the model predictions of a
variable and the observed values of that variable. Since the model ordinarily predicts a
number of values with varying errors, both error and uncertainty must be described in
terms of distributions of values. We seek various measures of those distributions,
including means, standard deviations, differences among various parts of the model
domain, and ideally, a representation of the distribution itself. For example, uncertainty
could be quantitatively expressed in terms of the joint conditional probability distribution
for a set of true values X;, X9, <oy Xp given the corresponding model predictions
X1y Xgy «eey Xpo The task of model evaluation is to estimate that distribution, or at least
certain measures of it, based in part on samples of apparent error. It should be
emphasized, however, that uncertainty distributions reflect our knowledge of the model's
performance and thus are subject to change as increased information becomes
available. For example, we might expect that the mean square error between a given set
of predictions and true values would become better defined (i.e., the variance about the
expected value would become smaller) as more data becomv‘e available for evaluation of
the model.

As noted in the introduction to this report, a Bayesian (or Monte Carlo or some
other) statistical theory is required to estimate the probability distribution described in
the previous paragraph. Because of project and data constraints that we encountered
(i.e., the treatment of the distribution of observational error) in the development of the
Bayesian theory, our initial primary objective of developing an analytical framework for
science-policy uncertainty quantification could not be carried through. However, we do
believe that the objectives of the methodology for evaluating model performance
described in the following paragraphs will provide some new and useful insights on
understanding the characteristics, including magnitude and spatial patterns, of the
apparent error in model predictions.

Our general objective is to develop a better understanding of the performance
characteristics and apparent error of a long-term regional transport and deposition
model. We intend to determine how well the predictions from the "standard" version of
the ASTRAP model compare with corresponding observations. Another goal is to discern
and quantify differences in spatial and temporal patterns in seasonal observations and
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predictions. With respect to temporal patterns, we are interested in (1) how well the
relative magnitudes of the maximum seasonal SOj deposition and SO, and SOy air
concentrations (DAC) are reproduced in time, (2) differences in performance found in
seasons of the same year (intraseasonal performance), and (3) differences in performance
found in seasons of separate years (interannual performance). With respect to spatial
patterns, we are interested in (1) the location and magnitude of maximums, and (2) the
location, orientation, shape, and gradient in the DAC contours.

We also intend to find out, in an operational sense, how the relative performance
of several parameter-adjusted versions of ASTRAP change over time and space. The
issue of why, in a diagnostic sense, a model performs well or poorly is of key importance
to model component and model data-base development and improvement. A diagnostic
approach that employs, for example, sophisticated global sensitivity analysis is beyond
the scope of this particular study. The results from this study should, therefore, be
viewed from an application or operational perspective on evaluating and comparing
models and model sensitivity rather than a diagnostic or research-oriented perspective on
evaluating model performance and model component improvement.

This section of our report outlines the basis for selecting the performance
evaluation measures and data analysis methodology. The selected statistical perform-
ance measures and methods are then described. With this foundation, the results from
the model performance and sensitivity evaluation are presented and discussed (Sec. 5).
Residual and scatter error patterns are presented with the aid of residual histograms,
scatter plots, and time-series graphs along with univariate and difference statistical
performance measures. The model performance sensitivity patterns resulting from
internal model parameter variation are shown, and the relative and absolute magnitudes
of model error are discussed. The decomposition of mean square error into its
systematic and unsystematic components is used to quantify the potential magnitude of
error reduction that can be achieved with the adjustment of model parameterization.
The spatial, temporal, and bias components of error are quantified through decomposition
of parametric statistical measures. Spatial patterns in model predictions and
observations are displayed through interpolation among data points with least-squared
regression and simple and universal kriging. Finally, some potential factors that may
influence apparent model performance are investigated. They include the sampling
protocol, geographic region, pairing observations and predictions as precipitation-
weighted ionic concentrations versus mass deposition flux, and spatial scale of data
aggregation.

4.1 SELECTION OF PERFORMANCE EVALUATION MEASURES AND METHODS

Several factors were considered in selecting the statistical evaluation measures
to be used in meeting our study objectives. The major factors included (1) the spatial
and temporal resolution of the ASTRAP model and associated data bases, (2) the
availability of observations of sufficient quality, quantity, and spatial distribution, and
(3) the potential applications the model results would serve. Each of these factors
constrains the applicability and interpretability of statistical performance measures. For
example, the course spatial (130 km) and temporal (=1 month) resolution of ASTRAP and
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the sparse distribution of the precipitation chemistry data can hamper interpretability of
standard parametric distributional statistics. The intended model applications can
similarly influence the selection of performance measures to be used in the model
evaluation. If it is important to replicate the upper end of the frequency distribution of
observed short-term (1-hr to 24-hr averages) ambient concentrations, then distributional
statistical measures, such as bias, correlation, and cumulative frequency plots, are
important. On the other hand, if it is important to replicate spatial patterns in observed
intermediate (monthly to quarterly periods) to long-term (annual period) deposition fluxes
or ionic concentration fields, then graphical pattern recognition techniques (e.g., contour
plots) and descriptive spatial statistics (e.g., decomposition of mean square error) are
important.

Another issue in the choice of performance measures is determining the
interpretability or significance of the computed statistic. In "significance tests" (e.g.,
"y value" confidence intervals, Mason-Whitney test, Bartlett's test), the data are assumed
to be statistically independent, but this is not the case in our study because of the spatial
correlation inherent in our data set. Also, significance testing is not recommended when
the extent of violation of the assumptions underlying the particular test is unknown, and
the power of the test is as much a function of the number of data points, the sample
distribution, and the test itself, as it is a function of the true relationships contained in
the data (Wilmott 1981). Therefore, these significance tests are not used to determine
the probability that the differences between predictions and observations were not
obtained by chance. In addition, parametric measures such as mean bias error, variance,
and correlation cannot alone reveal the true spatial characteristics of the data.

As a result of the above considerations, it was determined that standard model
evaluation methods, such as those recommended by the American Meteorological Society
(AMS) on quantifying and communicating model uncertainty (Fox 1984), cannot be used
exclusively. An approach was selected that combines the more traditional distributional
measures from the AMS with some new measures that allow for decomposition of error
components and a more robust analysis of spatial, temporal, and bias error. Some of
these measures are described briefly in the next section and more completely, with full
mathematical detail, in App. E.

4.2 DESCRIPTION OF PERFORMANCE EVALUATION MEASURES
AND DATA ANALYSIS METHODOLOGY

Statistical measures for evaluating model performance can basically be
categorized as parametric or nonparametric techniques. Parametric statistics assume
the data can be fit to some standard distribution function, such as a Gaussian or normal
distribution. Nonparametric data analysis techniques (such as the bootstrap method from
Efron and Gong 1983) and numerical methods (such as principal component, numerical
correlogram, time-series, sensitivity, spectral, and empirical orthogonal function
analysis) were considered but were beyond the scope of this particular study. Therefore,
our study was restricted to the use of parametric statistics. The parametric statistical
measures considered can be grouped as either graphical analysis or descriptive analysis
techniques. The graphical techniques listed in Table 4.1 can represent in a meaningful
way a model's ability to accurately characterize observational data. This representation,
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in turn, provides a valuable means to TABLE 4.1 Graphical Statistics Pattern
identify spatial and temporal patterns of Recognition Techniques
model performance and the sensitivity of
these patterns to perturbations in the
model's empirical or theot"et'lcally derived Seabter plnke
S The' descripbive’ Mensuces Normalized bias-scatter error plots
listed in Table 4.2 express the patterns of Fractional bias-scatter error plots
performance identified through graphical Residual histograms
analysis in quantitative terms. The Cumulative frequency distributions
measures help a model evaluator to discern Box plots
and compare levels of acceptable Observation/prediction histograms
performance among several models or R?Sidual'vs. prediction histograms
model versions, especially if sensitivity to  L.me-series plots

. 2 - Contour plots
adjustments in model parameters is a

- e Kriged
component of the model evaluation study. e Unkriged

Descriptive measures are of two
types: univariate measures and difference
measures. Univariate (single variable) measures can be used alone or in combination with
graphical displays or difference measures* to express means, mean squares, and
variances in observations and model predictions. Difference measures (two variables) are
of three kinds: arithmetic indices, nondimensional indices, and logarithmic indices.
Arithmetic indices ecan be used to express bias, variance, correlation, and mean or root
mean square error between observations and model predictions. Nondimensional indices
are valuable measures when the comparison of the performance of different models
and/or at different time periods is important. These measures can also be combined with
arithmetic indices or graphical displays to quantitatively characterize the patterns and
components of error. Finally, logarithmic indices are useful, in combination with
nondimensional indices, as an aid in ranking model performance. These indices are also
an important component of the Bayesian uncertainty theory as developed under this
project.

The following discussion describes some of the graphical techniques and the
principal descriptive statistical methods used in evaluating ASTRAP model performance.

4.2.1 Pattern Recognition through Data Display Techniques

The most commonly used data displays in model evaluation studies are scatter
plots of model-predicted (P) versus "reliable" field-observed (O) variables and frequency
histograms. The relationship between P and O can be well represented by scatter plots in
combination with descriptive performance measures. Scatter plots are particularly
helpful in uncovering underlying systematic differences between P and O as well as
troublesome extremes. The spatial dependence of model performance, if such

*When used with difference measures, univariate measures can be used to decompose
error into its spatial, temporal, and bias components.
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TABLE 4.2 Descriptive Statistical Model Performance Measures and Indices

Univariate Measures

0, P - Mean Observation and Mean Prediction

Ogs Op = Standard Deviation of Observations and Predictions
o, - Coefficient of Variation of Observations

cv - Coefficient of Variation of Predictions

MSB - Mean Square Observation

MSP - Mean Square Prediction

MSTO - Mean Square Temporal Observation

MSTP - Mean Square Temporal Prediction

MSSO - Mean Square Spatial Observation

MSSP - Mean Square Spatial Prediction

Difference Measures

Arithmetic Indices

1. Bias Error

MBE - Mean Bias Error

MABE - Mean Absolute Bias Error

MRPP - Mean Residual-Prediction Product
FABE - Fractional Average Bias Error
MRR - Mean Residual Ratio

RMR - Residual Mean Ratio

2. Correlation and Variance

Ry - Coefficient or Correlation between Observations and
Predictions

cov, - Covariance

Ry - Coefficient of Correlation between Residuals and
Predictions

cov, - Residual Covariance

FSE - Fractional Scatter Error

VAR - Variance

STD - Standard Deviation

cv, - Coefficient of Variation of Residuals

RPRS - Relative Prediction to Residual Scatter
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TABLE 4.2 (Cont'd)

3. Mean and Root Mean Square Error and Error Decomposition

MSE - Mean Square Error

RMSE - Root Mean Square Error

MSE, - Mean Square Error Unsystematic
MSE; - Mean Square Error Systematic

MSEEES Additive Systematic MSE
MSE_ - Proportional Systematic MSE
MSE; - Interdependent Systematic MSE
MSTE - Mean Square Temporal Error
MSSE - Mean Square Spatial Error
RDMSE - Relative DMSE (as percent of the normalized MSD)

Logarithmic Indices
MSLE - Mean Square Logarithmic Error

MSLTE - Mean Square Logarithmic Temporal Error
MSLSE - Mean Square Logarithmic Spatial Error

MLE - Mean Log Error

VLE - Variance Log Error

SLE - Standard Deviation Log Error

GMSLE - Geometric Mean Square Logarithmic Error
GMLE - Geometric Mean Log Error

GSDLE - Geometric Standard Deviation Log Error

Nondimensional Indices

I0A - Index of Agreement

DMSE - Dimensionless Mean Square Error

FABE - Fractional Average Bias Error

FSE - Fractional Scatter Error

NMBE - Normalized Mean Bias Error

NSE - Normalized Scatter Error

RPRS - Relative Prediction to Residual Scatter

RDMSE - Relative DMSE (as percent of the normalized MSO)
RSI = Rank Score Index

dependence exists, can be displayed on scatter diagrams by identifying groups of data
points by region or area. Frequency histograms are useful in displaying the distribution
and degree of bias in model predictions (residual histograms) and are useful in showing
how that bias varies over different time periods. The relative distributions of predictions
versus observations and the shape of those distributions can also be displayed with
frequency histograms.

The analysis of time-series plots can provide a clear picture of temporal patterns
in P and O. For example, a time-series plot can show the relative model performance
during climatologically different time periods and reveal the tias and temporal error in
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that performance. However, these plots can be difficult to interpret when P and (o}
trends are highly variable. The intraseasonal and interannual differences in observation
and predictions and the size of the residual can be visually displayed and easily identified
with these plots. Observations from an individual monitor and averaged observations
from multiple monitors spatially representing the model resolution-size receptor grid can
be shown and evaluated. The time-history of precipitation amounts can also be displayed
and correlated with the residual time-history. Until recently, only a limited historical
record of reliable observational data (e.g., wet SOZ deposition) was available to model
evaluators (only two years were available at the beginning of this study). As a result,
time-series plots have not been used often for evaluating long-term predictions from
regional-scale transport and deposition models. The reliable data available since 1980
have made the use of time-series evaluation of seasonal or monthly deposition
predictions more feasible. Previous studies using time-series plots have been done with
short-term predictions (averaging <24 hr) for short time periods (a month or so
duration). MecNaughton et al. (1980, 1981) used time-series plots in evaluating the
performance of the Regional Air Pollutant Transport (RAPT) model's predictions against
SURE daily SOj air concentration observations.

The relative bias and scatter in model predictions can be visually displayed with
fractional and normalized error plots. Fractional error (FE) plots provide visual
information about the overall goodness of fit between observations and predictions, in
addition to revealing patterns in bias and scatter error. Fractional scatter error (FSE) in
model predictions are plotted on the ordinate, while fractional average bias error (FABE)
in those predictions are plotted on the abscissa. The fractional bias and scatter are
computed as follows:

pang -2 f0 - 1) 4.1)
0O+ P
2 (c0 -0) ,
FSE==—°2 P (4.2)
Go + UP

where:
6 and 1-> = the overall average observation and prediction, and

o, and 9 = the standard deviation of observations and predictions.
FABE measures how well, on the average, a model estimates observational fields. If
FABE is less than +0.67 and more than -0.67, model predictions are within a factor of
two of observations. As FABE approaches +2.0, the model is producing extreme over- or
underpredictions. FSE measures how well, on the average, a model estimates the scatter
among observations. It represents the difference between the standard deviations of
observations and predictions. If FSE is less than +0.67 and greater than -0.67, the scatter
in model predictions is within a factor of two of the scatter in observations. As FSE
approaches +2.0, the model predictions of scatter in the observations are extreme.
Fractional error plots have been used primarily to describe the performance of short-
term GCaussian air quality dispersion models over local transport scales (Cox et al.
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1985a, 1985b; Irwin and Smith 1984). The use of these plots, which employ fractional
differences in means and standard deviations of observations and predictions, may not be
appropriate for quantifying the bias and seatter error for a long-term regional-scale
transport and deposition model. The reason is because of the spatial and temporal
differences between short-term, local-scale air-quality models and long-term, regional-
scale models (i.e., ASTRAP). The extreme end of the cumulative frequency distribution
is important in evaluating short-term air-quality models, while cumulative deposition
totals and mean concentrations are more important in evaluating long-term regional
models. Therefore, FE plots are used in our evaluation of ASTRAP primarily to display
sensitivity patterns in internal model parameter bias and scatter error.

The magnitude of the bias and scatter error, in addition to the patterns of
sensitivity in this error, can be displayed with normalized error (NE) plots. The
normalized scatter error (NSE) in model predictions is plotted on the ordinate while the
normalized mean bias error (NMBE) is plotted on the abscissa. The normalized bias and
normalized scatter error are computed as follows:

NMBE = = (4.3)
(ab . cp)
a
NSE = = (4.4)
(ao . op)
where:
N
oL *
r= 3 izl Oi Pl,
%
N
1 =
e el

r; =residual or difference between observation and prediction, and
N = number of observation-prediction pairs.

The distance of each data point from the origin on an NE plot is proportional to the mean
square error (MSE) in model predictions. Model mean biases and random variances are
accounted for in the MSE. This measure is computed as follows:

28
(oi - Pi) =

1 1

N
MSE = Yo (4.5)

=z~
I 2

1



47

The mean bias portion and random variance portion of the MSE error is shown in the
expression below, which can be shown to be equivalent to Eq. 4.5.

N-1 2 =D
MSE =T (1r + (r) (4.6)

The spatial patterns in model performance and the apparent error in those
patterns are determined through a geostatistical spatial extrapolation technique called
kriging. A description of the kriging approach is given in Sec. 5.3.2 and App. L.

4.2.2 Descriptive Statistical Performance Measures and Indices

As mentioned earlier, the majority of the statistical performance measures listed
in Table 4.2 are described in detail in App. E. Some of the individual or combined
measures or indices that play a key role in characterizing model performance are
described here. These measures include the index of agreement (IOA), dimensionless
mean square error (DMSE), relative DMSE, mean logarithmic error (MLE), variance
logarithmie error (VLE), rank score index (RSI), systematic mean square error (MSES),
and spatial/temporal/bias error components.

The IOA is greater than or equal to zero and smaller than or equal to one. It is
defined by Willmott (1981) as follows:

oSz

L@ -0p?
0A=1- — (4.7)
L el - fo?
where:
P; = the model prediction over grid cell i,
O; = the model observation over grid cell i,
Bl = By~ o,

0'=0. - 0, and
1 1
0 = the mean observation over all grid cells.

The right-hand side of Eg. 4.7 is the ratio of the mean square error and potential error.
This index specifies the degree to which the predicted and observed deviations about the
mean observation correspond. In a formal sense, it is not a correlation or association
measure but rather a measure of the degree to which a model's predictions are "error-
free" (assuming that the mean observation is "error-free"). The IOA is a standardized
measure that provides a means to compare the performance of different models or model
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versions, or to compare model performance under different atmospheric conditions or
during different time periods. It accounts for both bias and scatter in model predictions
but is more sensitive to scatter than bias in its indication of the relative amount of the
apparent model error. The closer the index is to 1.0, the better the model performance.

The DMSE is defined by Hanna and Heinhold (1985) as follows:

)
2

e (p, - 0,)

DMSE Sl e (4.8)
0-P

This measure, like IOA, accounts for both mean biases and the scatter or random
variations in model predictions. Unlike IOA, DMSE seems to be more sensitive to
changes in bias error than to changes in scatter error or variance (see discussion and data
plots in Sees. 5.2.1 and 5.2.2). The smaller the DMSE, the better the model
performance. As defined, the measure places more weight on higher concentrations
because the prediction-observation differences are more likely to be the largest at the
highest concentrations. Confidence intervals on the difference in DMSE between two
models or model versions (DMSE1 and DMSEZ) can be assessed with a Chi-square
evaluation, if the expected differences (DSME1 - DSMEZ) are normally distributed and
DSME; and DSME, are independent. Because both of these conditions are not likely to
be met, if the data set is small (N < 100), a procedure for better defining confidence
limits is desired. The bootstrap method developed by Efron and Gong (1983) provides a
means to establish confidence intervals for small data sets. The computer-intensive
requirements of this method alone, with limits imposed by project budget, prohibited the
use of bootstrapping procedures in our study.

The relative DMSE is the total error expressed as a percent of the dimensionless
mean square observation. It provides a less biased measure of error across short time
periods (seasonal or monthly) than the relative MSE used by Fay et al. (1985) to quantify
the "model" error for annual period(s) of deposition.* The RDMSE is computed as
follows:

-2
_ DMSE - 0 °.
LB0E = ==t S0 (4.9)

MSE/(0 - P)
MS0/0

RDMSE =

where the numerator is the DMSE and the denominator is the dimensionless mean square
observation. The dimensionless mean square observation is computed as the sum of the
squared observations divided by the square of the mean observation.

The MLE and the VLE were measures derived primarily for use in the Bayesian
model development (Ball 1986). Some of the parameters of more normally distributed

*Variability of mean deposition across annual time periods is less than the variability
across seasons (e.g., winter/summer).
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data that resulted from taking logarithms made the use of these measures as bias and
variance indicators attractive. These measures are computed as follows:

MLE = § iglln (%) : (4.10)
2
VLE = £ igl [m (9);-% iil m ($) i] (4.11)

A dimensionless index that combines bias- and scatter-measuring properties of
the I0A, VLE, DMSE, and MLE would be a very useful measure for comparing the
performance of different models or the performance of varying internal parameters of
the same model. It would also provides a more robust measure for ranking model
performance. This dimensionless RSI can be derived from Egs. 4.7, 4.8, 4.10, and 4.11 as:

I0A (DMSE + MLE + VLE) + 1 (4.12)

RSI = ToA

An errorless model is indicated by an index of 1.0, while an RSI greater than 2.0
indicates poor model performance. Average model performance can be assumed with
values somewhere between 1.65 and 2.00.

Willmott (1981 and 1982) suggests a means to decompose MSE into its systematie
and unsystematic components. This provides a means of calculating the potential error
reduction that can be achieved while studying the sensitivity of a model to variations in
model-dependent variables. The systematic MSE measures reducible model and data-
base uncertainty and is computed as: -

MSE, = (p. - 0.)? (4.13)
1 il

il

II.M =

1
N

1
where Pi =a+b-0panda and b are the intercept and slope of the regression of P on
0. An ordinary least-squares fit can be assumed under the proposition that P is linearly
dependent on O. The assumption of P as the dependent variable and O as the independent
variable is particularly important, since it implies that O is error-free and that all the
error variance is contained within P. With very good observational data, this assumption
is quite reasonable, although O is rarely, if ever, error-free (Willmott 1981).*

*Willmott also suggests that systematic error can be further decomposed into an
additive, proportional, and interdependent component (see App. E), but the utility of
such decomposition is not immediately known.
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The unsystematic component of MSE can be assumed to be a measure of the
potential accuracy (explained in the following text) of the model and data base and can
be computed as:

T~z

(o= pe)” (4.14)

MSEU ¥ i=l 1 1

or, more efficiently, as:
MSE, = MSE - MSE (4.15)

The error expressed in Egs. 4.13, 4.14, and 4.15 can be more easily interpreted, in units
of P and O, by taking the square roots of the MSE. With a good model, the systematic
differences should approach zero, while the unsystematlc differences approach the root
mean square error: RMSE = [(RMSE) + (RMSE ) ] 2 If the O and P differences
described by RMSEg can be descnbed by a linear functlon, these differences should be
relatively easy to dampen with simple model adjustments, for example, revisions to the
model parameterization. In other words, without change or significant changes to the
model's structure (governing equations), it should be possible to reduce the systematic
portion (RMSES) of the apparent model error. This implies that the unsystematie portion
(RMSE,)) can be interpreted as a measure of potential model accuracy (Willmott 1982).

Finally, MSE can be decomposed through analysis of variance into its bias,
spatial, and temporal components. By taking the sum of squares within groups (over all
similar time periods, e.g., winters, summers, etc.) at each receptor grid region, the mean
square temporal error can be computed as follows:

MRS
1

3a1 k=1 19
N-M

=R P =l >
MSTE = - -

(4.16)

By taking the sum of squares between groups over all receptor grid regions, the mean
square spatial error can be computed as follows:

? [<r.> ~ <<r>>]?
MSSE = .. —— (4.17)
where:
Oik = observation at receptor i during time period k,
It = prediction at receptor i during time period k,

M = cumulative total number of nonzero observation sites
producing at least one observation-prediction pair,
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K. = number of observations (seasons or months) at site i,

Z
"
(e

Ki = total number of nonzero observation-prediction

il L
pairs,

i

-
"

receptor index,

k = time period index,
K. K
1 [ zl 21 ]
<rL> =i 0. P
l(l L ik k=l ik
= the mean residual at receptor averaged over all time periods, and
L = T
eeern= | ] iDL Nt Pik] (4.18)

i=1l k=1 i=1 k=1
= the mean residual over the entire field of values.

Equations 4.16, 4.17, and 4.18 can now be used to decompose the MSE (Eq. 4.5)
into its temporal, spatial, and bias components, as:

MSE = !1-1_M MSTE + “;Nl MSSE + <<r>>° (4.19)

The derivation, modification, and use of Eq. 4.19 is discussed in Sec. 5.3.1,
Eq. 5.8, with results of the analysis of the ASTRAP prediction of wet sulfate deposition
presented. Also discussed, with results, is the derivation of explained variance in terms
of a spatial and temporal component. This measure of model performance is very useful,
since the bias-induced observational error is corrected for in the expression derived for
the explained variance in model predictions.
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5 MODEL PERFORMANCE AND SENSITIVITY EVALUATION RESULTS

Regional-scale Lagrangian models such as ASTRAP have a relatively coarse
spatial and temporal resolution. ASTRAP has a temporal resolution of one month and a
spatial resolution of 100 to 130 km. The choices available for pairing of observations and
predictions are restricted by the spatial and temporal resolution constraints of the
model, the constraints of the observational data base (e.g., number of valid and
representative sites and number of samples per site), and the error that can be
introduced by data aggregation (time and space scales). Our comparisons were restricted
by the number of data points available to unpaired data or data paired only in time. In
addition to individual observation and prediction pairings in time (by season), several
levels of time and space aggregation were examined. Spatial aggregation was taken on a
unit-grid increment (30-40 km), 9-grid increment (300-390 km), and 36-grid increment
(1,200-1,560 km) basis.* Simple arithmetic averages were computed for each
aggregation level. Observations and predictions were paired on a unit-grid basis, and
performance results were reported on this basis. The effects that aggregating
predictions and observations over large spatial scales has on model performance are
discussed under special topics in See. 5.4. Temporal aggregation of seasons was taken
over one year (four seasons), two years (eight seasons), and like seasons (four groups of
two seasons), with a season being as previously defined in Sec. 3.

Our results are reported under four subject areas. The residual and scatter
patterns in model performance are brought out with the use of scatter, time-series, and
residual histogram plots (Sec. 5.1). A variety of statistical measures of bias and variance
are used in describing the patterns observed with the data graphies. The evaluation of
model sensitivity to variation in internal model parameters is covered next (Seec. 5.2).
Fractional error and normalized error plots are used to display sensitivity patterns to
variations in internal model parameters. We then provide an analysis of spatial patterns
through the use of contour plots and decompose error into its bias, spatial, and temporal
components (Sec. 5.3). Finally, in Sec. 5.4, a number of special topics are covered on
factors influencing apparent model performance and interpretation of model results. The
results should be viewed collectively because no single group of performance measures
(e.g., descriptive difference statistics, nondimensional indices, graphical statisties) can
describe all the aspects that are significant when judging how well a model characterizes
observational fields. Even when viewed collectively, if the error associated with the
computation of field sampling and data analysis is not well defined, the interpretation of
model performance results, particularly the identification of why the model performs
well or poorly, becomes exceedingly difficult.

*Winds for ASTRAP are analyzed over an NMC grid cell, while precipitation is analyzed
over a one-third NMC grid cell. The NMC grid cells (each composed of nine unit-grid
increments) are displayed in the model evaluation grid, Fig. 3.1. The model evaluation
region (MER) used in this study is composed of 360 of these unit-grids. The relative
scale of the 9-grid (40 per MER) and the 36-grid (10 per MER) increments can also be
seen in Fig. 3.1 (designated by small letters and roman numerals).
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5.1 RESIDUAL AND SCATTER ERROR PATTERNS

Residual and scatter performance measures and graphical data displays can help
to reveal some of the temporal patterns in model performance. These patterns are
presented and discussed for the 1978 air-concentration data (Sec. 5.1.1) and the 1980 and
1981 wet-deposition data (Sec. 5.1.2). Temporal va_x_‘iations in residual patterns are
illustrated with frequenc! histograms of monthly SO; and SOZ air concentrations and
seasonal fluxes of wet SO0, deposition. Temporal variations and some spatial features of
observations and predictions of these variables are then presented in scatter and time-
series plots.

5.1.1 Monthly Average Air Concentrations

The frequency histograms of soz air concentration residuals are shown for each
of four months in Fig. 5.1. With the exception of October, the SOZ residuals are fairly
close to being normally distributed, with 60% of differences between observations
predictions within one standard deviation of the residuals ("r)’ The October distribution
is skewed to the left, with only 30% of the residuals within one Ope The residuals in
October show a strong negative bias (overprediction). The mean bias error in ASTRAP
SOZ predictions ranged from #0.4 ug/m® in July to -2.8 u m3 in October. The SOZ
residuals with highest frequency occurred in the 1 to 2 ug/m® range (24% of the time) in
January, the -2 to -1 range (38% of the time) in April, the -1 to 2 range (40% of the time)
in July, and the -4 to -3 range (30% of the time) in October. Figure 5.2 shows the
frequeney histograms of SOq air concentration residuals over the same time period. The
S0, distributions approach normality, with over 60% of the SO, residuals within one o,
for all four simulation months. The January and April simulations have a slight positive
bias. The mean bias error in ASTRAP SO, predictions ranged from +2.0 ug/m® in
October to 12.6 in January. The highest-frequency SOq residuals occurred in the 10 to
20 ug‘/m3 range (22%) in January, the 0 to 5 range (24%) in April, the 0 to 10 range (43%)
in July, and the -10 to 0 range (48%) in October. »

Scatter plots of monthly SOZ and SO, air concentrations are presented in
Figs. 5.3 and 5.4. Perfect fit is indicated by the center dashed line, while predictions
that are a factor of two under or over observations are indicated by the outer two
dashed-dotted lines. The solid line represents the least-squared linear regression fit of
the data. The slope, intercept, and correlation coefficient are shown on each plot.
ASTRAP predictions for July SOZ air concentrations show the smallest and the most
symmetrical scatter around the perfect prediction line. The January scatter plot shows a
tendeney for model underprediction, while the April plot shows a slight tendency for
model overprediction. The October data show a strong tendency for overpredicting SOy
air concentration measurements. All four of the SOg plots show a tendency for model
underprediction. The strongest tendency appears in the January simulation, while a
slight tendency to underpredict appears in the July simulation. The SOZ bias tendencies
are further supported by a positive MBE of 1.2 for January and 0.4 for July, and a
negative MBE of 0.9 for April and 2.8 for October. Likewise, the positive MBE for SO,
ranging from 2.0 (October) to 12.6 (January) supports the degree of positive bias observed
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from the SO, data plots. Over- or underpredictions of SOZ air concentrations greater or
equal to a factor of two occurred at three locations (northeast New York, Memphis,
Tennessee, and central Wisconsin) in January; one location (central Wisconsin) in July;
and five locations (northeast New York, east New Hampshire, central Massachusetts,
Long Island, New York, and Delaware) in October. The relative residual error (05 -
P;/O;) at these sites ranged from 66% (TN 36, III b.1) to -510% (NY 51, IX a.4) in
January; 54% (WI 39) in July; and -215% (NY 51, IX a.4) in October. Over- or
underpredictions of SO, air concentrations greater than or equal to a faetor of two
occurred at three locations (central North Carolina, east and southeast New York, and
southwest Indiana) in January, four locations (southeast New York, Toronto (Ontario),
west Kentucky, and central Ohio) in April; three locations (central Massachusetts,
southeast and west New York, and northwest Pennsylvania) in July; and two locations
(central Wisconsin and southeast Ohio) in October. The relative residual error at these
sites ranged from 68% (NY 15, IX b.1) to -503% (NC 46, VII b.7) in January; 53% (OH 28,
VI b.3) to 70% (NY 15, IV b.4) in April; -139% (MA 1, IX a.8) to 67% (NY 14, PA 16, VI
c.3) in July; and 53% (WI 39, II a.7) to 71% (PA 2, VI d.7) in October. The relative
residual error at each ASTRAP grid cell, represented by at least one observation, is given
in Tables M.1 and M.2, App. M, along with the model predictions and observations.

The characteristies of the site areas for which ASTRAP overpredicted SOZ air
concentrations are that they are either located on elevated/rough terrain (Whiteface
Mountain, NY 51; Hanover, NH 37), in a valley area influenced by channel flow
(Montague, MA 1; Connecticut River Valley), or near coastal areas (Indian River, DE 3;
Huntington, NY 31). Since the same degree of overprediction does not occur at these
sites for more than one month (except for Whiteface Mountain, two of three months with
validation data), other factors besides complex terrain must be contributing to the poor
model performance. The relative bias (positive or negative) with respect to other data
points in the scatter plots seems to be consistent across months. In other words, the
scatter pattern seems to proportionately shift in the same direction from month to
month, at least for data points near the factor-of-two lines. This is not the ease for the
802 scatter plots, in which the scatter shift from month to month does not seem to be
proportional. This difference may be due to the fact that ASTRAP-predicted S0y
concentrations are more dependent than SO, concentrations on changes to large-scale
meteorological patterns. These large-scale changes tend to have a more uniform
influence on the SOZ scatter patterns. On the other hand, the SO, scatter patterns are
influenced more by local variations in meteorology and emissions, not adequately
resolved in this data base.

The time-series plots of monthly SOZ and 802 air concentration mean
observations and predictions over four months in 1978 is shown in Fig. 5.5. Although the
bias is smaller over the first three months for SOZ, the variations in mean monthly S0q
observations seem to be temporally tracked better than variations in mean monthly SOZ
observations. The model tends to systematically underpredict mean monthly SOZ
observations over all four months. This positive bias ranges from 28% in January to less
than 10% in October. The bias error for S04 is positive in January (16%) and July (4%)
and negative in April (14%) and October (54%). Univariate measures are given in Fig. 5.5
to complement the time-series plots and to aid in the evaluation of the temporal
variation of bias and scatter error. With respect to bias, SOZ simulations in July and SOy
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simulations in January resulted in the smallest average error (0.5 and 3 ug/m3,
respectively), while soz simulations in the fall and SO, simulations in January resulted in
the largest average error (-2.9 and 12.6 ug/ms, respectively). The degree to which ¢
approaches o, is a rough indication of how well the model reproduces the observeg
variance (Wilmott 1984). The variances in observations and predictions are nearly equal
in January and July for SOZ and in January and April for SO4. The predicted variance is
about one-half the observed variance for SOy in October and for SO, in July.

A total of 16 soz stations and 25 SOq stations have valid observations for all
four months. The time series of observations and predictions, computed over a unit-grid
inerement basis, for four representative SOZ and SO, sites are shown in Figs. 5.6 and 5.7,
respectively. Two of the SO; and SOq stations are Class I, SUR]:: sites, and two are
Class II, SURE sites. The SOZ site locations are the same as the SO; site locations, with
the exception that site 1 (Montague, Massachusetts) instead of site 3 is used for SOZ.
(Site 3 did not have four valid months for SOZ') Figures 5.6a and 5.7a show the
time-series plots for model evaluation grid region Ila, represented by the Messer,
Wisconsin site. This is the only site identified in the scatter plots at which the model
underpredicts SOZ observations by more than a factor of two (>50% underprediction) for
January and July. Underpredictions of SO, observations (Fig. 5.7a) are also evident at
this site, but not to quite the same degree (32% in January and 47% in July). Comparison
of time-histories of SOZ predictions and observations in the other three grid regions
(Figs. 5.6b, ¢, and d) showed the Lake Huron-Erie-Ontario region as having the smallest
differences in January (14%) and April (-16%). The smallest differences in soz
observation-prediction error for July (-2%) and October (-42%) occurred in the southwest
region at the Rockport SURE, ClassI site (Fig.5.6b). Similar comparisons of S0,
predictions with observations (Fig. 5.7b, e, d) showed the Rockport site to have the
smallest residual error over all four seasons, ranging from <1% (January) to 12% (April).
The Lake Huron-Erie-Ontario region time-series plots (Fig. 5.7d) show the largest error
of the four grid regions, with underpredictions ranging from 20% (October) to over 65%
(July). This degree of underprediction is likely to result from nearby (within 100 km)
large-source or multiple-source contributions to SO, concentrations.

5.1.2 Seasonal Fluxes in Wet Sulfate Deposition

The frequency histograms of wet-deposition residuals are shown for each of the
eight seasons of 1980 and 1981 in Figs. 5.8 and 5.9. The summer 1980 and 1981 residuals
are the closest to being normally distributed, with 70% of the observation-prediction
differences within one standard deviation (0,) of each other. The residuals for winter
1980 showed the farthest departure from normality, with only 44% of the residuals with
one o.. Negative bias (overpredictions by one or more °r) was dominant (greater than
50% of residuals) only in autumn 1980. The mean bias error ranged from -0.1 kg SOZ/ha
(spring 1981) to -3.0 (autumn 1980). The combined season frequency histograms for 1980,
1981, and 1980/1981 in Fig. 5.10 show the 1981 residuals to be closest to normality (76%
within one o) and the 1980 residuals to depart from normality (47% within one °r)' The
greater size of the 1981 data base (compared with the 1980 data base) pushed the
combined 1980/1981 residual distribution closer to normality, with 65% of residuals
within one o,.. The mean bias error was the smallest, -0.8 kg/ha, for 1981, and the
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largest, -2.01 kg/ha, for 1980. The mean bias errors and standard deviations for each
season and the combined seasons are also given in the figures. The general shape of the
observations and prediction distributions for combined like seasons and combined seasons
for 1980, 1981, and 1980/1981 are shown in the frequeney histograms in Figs. F.1 through
F.3, App. F.

The scatter plots in Figs. 5.11 and 5.12 present a pairwise plotting of unit-grid
increment average model predictions with observations for eight seasons, 1980 through
1981. Perfect fit is indicated (as it was for the 1978 plots) by the center dashed line,
while predictions that are a factor of two under or over the observations are indicated by
the two outer dashed-dotted lines. The solid line represents the least-squared linear
regression fit of the data. The slope, intercept, and correlation coefficient are given in
each of the plots. ASTRAP predictions for summer 1980 and spring and summer 1981
show the smallest and the most symmetrical (unbiased) scatter along the perfect
prediction line. The other scatter plots show a tendency for model overprediction. This
tendency is further supported by a negative mean bias error (MBE) greater than 2.0 for
spring 1980 and for autumn 1980 and 1981 simulations. Although the negative MBE is
small (<1.0) for the winters (because winter has lower deposition amounts than the other
seasons), the scatter plots clearly show the systematic negative bias in the winter
predictions. The comparisons in spring 1981 resulted in the smallest negative bias (MBE
= -0.1), while comparisons in the summer 1981 resulted in an equally small positive bias
(MBE = 0.2). Summer 1981 was the only season with positive bias.

Overpredictions greater than a factor of two occurred at five grid regions in
southwest Ohio, Pennsylvania, Virginia, and West Virginia in winter 1980; at five grid
regions in the Adirondacks, Pennsylvania, and West Virginia in spring 1980; at two grid
regions in Pennsylvania and Long Island in summer 1980; and at ten grid regions in
western New York, Massachusetts, Pennsylvania, central Illinois, Virginia, and
southeastern Ontario in autumn 1980. The relative residual error at these sites ranged
from 100% (VA 2, Reg. VII c.4) to 256% (PA 3, Reg. VI d.7) for the winter; 129% (NY 3,
Reg. VI c.6) to 175% (NY 6, VI c.9) for the spring; 103% (PA 2, Reg. VI d.5) to 166% (PA
3, Reg. VI d.7) for the summer; and 101% (IN 2, Reg. II d.7) to 387% (NY 3, Reg. VI c.6)
for the autumn. No factor-of-two underpredictions occurred in 1980. Factor-of-two
overpredictions were less prevalent in 1981 than in 1980. This degree of mismatching
observations occurred at five locations (southwestern Ohio, Massachusetts, Delaware,
Whiteface Mountain, New York, and central Illinois) in the winter and at nine locations
(eastern New York, Ohio, Delaware, eastern North Carolina, and north central Virginia)
in the autumn. Factor-of-two underpredictions occurred at two locations in Canada
(northern Nova Scotia and the Algoma region) in the winter and at one location
(northwestern Wisconsin) in the summer. The relative residual error at these sites ranged
from 64% underprediction (OH 42, Reg. V b.1) to 214% overprediction (NY 10, Reg. IX
a.4) for the winter; 64% underprediction (WI 1, Reg. I b.5) for the summer; and 104% (OH
4, VI b.2) to 262% (NC 7, VII c.9) overprediction for the autumn. All predictions for
spring 1981 were within a factor of two of observations.

The factor-of-two overprediction data points in Figs.5.11 and 5.12
predominantly represent precipitation chemistry samplers with event (MAP3S) or daily
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(UAPSP) sampling protocols. This situation is true for all 5 data points for both winters,
for the 2 data points for summer 1980, for 4 of the 5 spring 1980 data points, 7 of the 10
autumn 1980 data points, and 5 of the 9 autumn 1981 data points. Thirteen separate
event or daily samplers were involved. A possible bias between event/daily and
weekly/monthly networks is suggested. This possibility is addressed further in Sec. 5.4.4,
when the influence of sampling protocol on apparent model performance is evaluated.
The relative residual error at each unit-grid increment, nine-grid increment, and twelve-
grid increment, represented by at least one observation, is given in Table M.3, App. M,
along with the model predictions and observations.

The time-series plots of mean wet SOZ deposition observations and predictions
over eight seasons, 1980 and 1981, are given in Fig. 5.13. The seasonal variations in
mean observation seem to be tracked fairly well by ASTRAP. The model tends to
overpredict mean seasonal observations in 1980 by between 12% (summer) and 54%
(winter). The plot shows that the tendency to systematically overpredict is less
significant in 1981. The model shows small overprediction (~1%) and underprediction
(<4%) of mean observations in summer and spring 1981, moderate overprediction (23%) in
the winter, and a 42% overprediction in the fall. Univariate measures are also given in
Fig. 5.13 to complement the time-series plots and to aid the evaluation of the temporal
variation of bias and secatter error. With respect to bias, simulations in spring and
summer 1981 resulted in the smallest average error (-0.1 and 0.3 kg SOZ/ha), while
simulations in spring and autumn 1980 and autumn 1981 resulted in the largest average
error (-3.1, -3.0, and -2.5 kg SOZ/ha). Model simulations in summer, and in spring and
autumn 1981 exhibit about 50% to 60% of the observed variance, while simulations in
winter 1980 exhibit only 5% of the observed variance. The explained bias-corrected
variance (EBCV) between seasons, decomposed into a spatial and temporal component,
will be discussed in Seec. 5.3.2.

A total of five stations have valid observations for all eight quarters. The time
series plots over individual grids for four of these five sites are shown in Fig. 5.14. Two
of the four subregions (X.d.6 and Vl.a.8) are represented by grid averages from more than
one site in that subregion. All the stations have an event or daily sampling protocol, with
the exception of the CANSAP Shelburne, Nova Scotia monitor, which has a monthly
protocol. The Shelburne monitor is in the same subregion as the Kejimkujik APN daily
sampler. The subregion seasonal mean is therefore the average of a daily and a monthly
sampler. Each of the site-specific observed seasonal deposition amounts is plotted for
comparison with the site average seasonal deposition amounts and the ASTRAP-predicted
site average value in Fig. 5.14a. (Sites in the same grid cell are averaged.) The residual
error or difference between observations and predictions ranges from less than 1% in fall
1981 to a 35% overprediction in summer 1980. If the observations are corrected for
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seasalt, the negative bias becomes slightly smaller.* Figure 5.14b shows the time-series
plot for the Brookhaven site. This is one of the MAP3S sites identified in the seatter
plots at which the model overpredicts observations by more than a factor of two. This
degree of negative bias at this location is evident for summer and fall 1980. Also shown
for comparison are the measured and modeled precipitation amounts, in centimeters.
Figures 5.14c and 5.14d show the time-series plots for the Experimental Lakes Area
(ELA) site in west Ontario and the Long Point site in south Ontario. These two have
daily sampling protocols. The residual error in the ELA site ranged from -3% (autumn
1980) to 29% (autumn 1981), while the residual error at Long Point ranged from about 1%
(spring 1981) to -61% (fall 1980).

5.2 SENSITIVITY IN MODEL ERROR PATTERNS

Sensitivity analysis can assume several forms, with a wide spectrum of
sophistication possible. There are basically two types of sensitivity analyses: local and
global. Local sensitivity analysis usually involves taking partial derivatives of specified
output variables of interest (e.g., SOZ air concentrations) with respeet to a single input
parameter (e.g., source strength) or internal model parameter variable (e.g., deposition
velocity). These sensitivity coefficients (partial derivatives) provide direct information
about the effect that variations (small or large) in each parameter around its nominal
value have on the output or state variables. Global sensitivity analysis involves taking
partial derivatives of state variables with respect to all parameters simultaneously. The
sensitivity coefficients in this case are local gradients of each variable with respect to
each parameter in the multidimensional parameter space. Sensitivity information for
local sensitivity analysis is obtained by Taylor series expansion or through solution of a
set of ordinary partial differential equations. Sensitivity information for global
sensitivity analysis is obtained by the Fourier Amplitude Sensitivity Test, pattern search
procedures, or Monte Carlo method. These methods are used to determine probability
density functions. Further details on these methods can be found in Tilden and Seinfeld
(1982) and Rabitz et al. (1983). The limited scope of our study did not permit the
application of any of these methods for sensitivity analysis. In our sensitivity evaluation,
we simply looked at the effects on model performance patterns that are associated with
individual or grouped variations in preselected model parameters.

In our sensitivity study, we focus on four internal model parameters. Parameters
were selected on the basis of their commonality with the structure of other models,
likelihood of eventual testing with field data, and general importance in influencing
deposition and ambient concentration patterns. The parameters examined are dry-
deposition velocities (Vd) for S04 and SOZ, linear transformation rate (Tr) of SO, to SOZ,

*No seasalt or precipitation correction was made to the observations that were
statistically compared. See App. G, Table G.1, for the identification of sites that the
Unified Deposition Data Base Committee (UDDBC 1985a, b) recommended for a seasalt
and/or precipitation correction. Table G.2 shows that these corrections to the data
resulted in a maximum of only 3% improvement in overall model performance for
winter simulations.
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and bulk sulfur wet-removal coefficient (WC). The diurnal and seasonal variations in V,
and T, and the WC are scaled by a factor of two (100% larger and 50% smaller).* The
Vs for 502 and soz were adjusted concurrently to avoid unrealistic relative V4 rates
between sulfur species. In this study, all comparisons of observations with predictions
are aggregated on a grid whose size is approximately equivalent to the model's spatial
resolution. Table 5.1 identifies the parameter adjustments for the 27 model variations
tested. Model version 10 is the nominal or standard version of ASTRAP. The seasonal
ranges in the diurnal patterns of the maximum, minimum, and average values of V4 and
i for the nominal version of ASTRAP and the factor-of-two adjustments to those ranges
are given in Table 5.2. The nominal WC in the model does not vary diurnally or
seasonally, except it does have a lower value in northern latitudes in the winter.

Both graphical display techniques and parametric statistical measures are used to
evaluate the sensitivity in model performance. The differences in the patterns of
displayed bias and scatter error and the relative sensitivity of model performance to
variations in model parameters can be illustrated with fractional bias and scatter error
(FBSE) plots and normalized bias and scatter error (NBSE) plots. These plots can also
display relative (between model versions) estimates of goodness of fit between model
predictions and observations.

As discussed previously (Sec. 4.2.1), FBSE 1plots are used principally for
evaluating local-scale, short-term model performance. In FBSE plots, FABE in model
predictions is plotted on the x axis, while FSE in those predictions is plotted on the
y axis. In NBSE plots, normalized scatter (NS) in model predictions is plotted on the
y axis and computed as the ratio of the standard deviation of residuals to the square root
of the product of the standard deviation of the observations and predictions. Normalized
bias (NB) in model predictions is plotted on the x axis and computed as the ratio of the
mean bias error (MBE) and the square root of the product of the standard deviation of the
observations and predictions.

The sensitivity of model performance and the error patterns emerging from these
plots are discussed in the next section for predicted air concentrations and wet-
deposition fluxes. The patterns that emerge (parameter clustering in groups of three) are
then used with index of agreement (IOA), dimensionless MSE, rank score index (RSI), and
systematic/unsystematic MSE to quantitatively describe and explain sensitivity patterns
in model performance.

*The factor-of-two parameter adjustments were originally selected for the Bayesian
probability analysis of source receptor uncertainty. We feel that factor-of-two
variations in V4 and T, represent a realistic estimate of the range of uncertainty of the
nominal values of these parameters in ASTRAP. Section 2.4 of this report discusses
these parameters further, ineluding the seasonal and diurnal variations of the V4 and T,.

tIt should be noted that FE plots have previously been used to evaluate a model's ability
to reproduce the upper end of the frequency distribution of observations (Cox et al.
1985a, 1985Db).



TABLE 5.1 Internal Model Parameter Adjustments Used for Model Performance Sensitivity Tests

Low Dry- Normal Dry- High Dry-
Deposition Velocity Deposition Velocity Deposition Velocity

VgsT WC® Vg, T, WC V4, T, ,WC Vgr T WG Vg, T, WC Vg, T, ,MC Vg, T, WC VgsT WG V4, T, ,HC

Transformation Low Normal High Low Normal High Low Normal High
rate

Low wet- 5 4 6 2 1 3 8 7 9
removal

coefficient Lb L L L N L L H L N L L N N L N H L H L L H N L HESH 1T
Normal wet- 14 13 15 11 10 12 17 16 18
removal

coefficient L L N L N N L H N N L N N N N N H N H L N H N N H H N
High wet- 23 22 24 20 19 21 26 25 27
removal

coefficient L L H L N H L H H N L H N N H N H H H L H H N H H H H

dry-deposition velocity
transformation rate
wet-removal coefficient

8parameters: V4

T,

wC

bparameter Adjustments: H = High H=2N
N = Nominal L =0.5N
L = Low

9L
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TABLE 5.2 ASTRAP Dry-Deposition Velocity and
Transformation Rate Variations, Normal and
Adjusted (ranges result from seasonal variation)

Range Min. Max. Avg.

S0y dry deposition (cm/s)

Normal 0.05 0.25-0.45 0.12-0.23
Low 0.025 0.125-0.225 0.06-0.115
High 0.10 0.50-0.90 0.24-0.46

50, dry deposition (cm/s)

Normal 0.10 0.65-0.90 0.30-0.45
Low 0.05 0.15-0.225 0.15-0.225
High 0.20 0.60-0.90 0.60-0.90

Transformation rate (%/hr)

Normal 0.16-0.40 1.1-4.0 0.4-1.6
Low 0.08-0.20 0.55-2.0 0.2-0.8
High 0.32-0.80 2.2-8.0 0.8-3.2

5.2.1 Seasonal (Monthly Average) Air Concentrations
and Monthly Fluxes in Wet Sulfate Deposition

The performance sensitivity patterns for ASTRAP simulations of July 1978 SOg
air concentrations are shown in the NBSE plot of Fig.5.15. The comparison of
observations with all 27 versions of ASTRAP is represented. Each of the data points
represents the approximate midpoint of the NB and NS of three parameter-set (PS)
versions of ASTRAP (PS triple). Each triple is clustered in groups of three (triplets)*,
resulting from the factor-of-two adjustments to V4. The triplet with the smallest NS and
NB error is the low Vy triplet (Vd held at one-half of its reference pattern of variation
while varying T, and WC parameters) and is located in the lower center portion of the
figure. The high V4 triplet (V4 held at twice the reference pattern of diurnal variation
while adjusting the other parameters) has the largest NS and NB error and is located in
the upper right of the figure. The normal Vg triplet has NS and NB error between that of
the other two triplets. Each triplet is ordered from left to right by low, normal, and high
TR. If NB error is positive, parameter sets within each triple are ordered from left to

*A triplet is composed of model predictions from nine separate PS variations of
ASTRAP, each of which is paired with the same set of observations.
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FIGURE 5.15 Normalized Bias-Scatter Error Sensitivity Patterns for
Sulfur Dioxide Air Concentrations

right, by low, normal, and high WC. Negatively biased triples have a reverse ordering:
high, normal, and low WC. The low V4 triplet exhibits the smallest error (of the three
triplets plotted) for the July 1978 SO, simulations. The low T, triple within this triplet
shows the best performance as measured by the smallest NB and NS error (which is
proportionately equivalent to the smallest root mean same error).

Figure H.12, App. H, shows the NBSE plots of SO, simulations for all four
seasons (each data point represents the normalized bias and scatter of a single PS version
of ASTRAP). The data show a positive bias tendency in ASTRAP predictions. This
tendency is less significant in October and most significant in January. When Vcl and T,
are high, positive bias and scatter error are the greatest. The bias and scatter error are
minimized with nominal to low V4 and T, depending on the month being simulated.

Ambient SO: sensitivity patterns for ASTRAP parameter adjustments are given
in Fig. 5.16. The data show the same clustering in triplets as in Fig. 5.15, but the
clustering now results from the factor-of-two adjustments to T, instead of V4. Triplets
are arranged from left to right by high, normal, and low T,.. The triples within each
triplet are ordered from left to right by low, normal, and high Vq- Parameter sets within
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Sulfate Air Concentrations

each triple have the same ordering by WC as shown in the sensitivity pattern for SOy air
concentrations. The negatively biased triples, as is the case for the SO, patterns, have
the reverse ordering of the positively biased triples. The normal T, _triplet exhibits the
smallest error (of the three triplets plotted) for the July 1978 SOy simulations. The
normal V, triple within this triplet shows the best performance, as measured by the
smallest NB and NS error (smallest MSE).

The NBSE plots of SO4= simulations for all four seasons (each data point
represents the NB and NS of a single PS version of ASTRAP) are shown in Fig. H.13,
App. H. The data show a negative-bias tendency in ASTRAP predictions for the spring
and fall and a slight positive-bias tendency in the winter. Comparing NBSE patterns for
SOz and SO, shows that ASTRAP simulations of SO; air concentrations are more
sensitive to parameter variations than are ASTRAP simulations of SO, air
concentrations. The soz plots clearly show that the clustering of model PS is governed
in a hierarchical order by the output variables' (e.g., air concentrations of sulfate)
sensitivity to model parameter variations. For SOE, Tl. variation has the greatest
influence, followed by V4 and WC. For 509, A variation has the greatest influence (but
to a lesser degree than T, has on SOy concentrations), followed by T, and wcC.
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Figure H.14, App. H, shows the SO, and soz NBSE when all four seasons of data
are grouped as one (unpaired in time and space). As expected, the clustering sensitivity
patterns are identical to the patterns when model comparisons with observations are
paired in time. However, there does seem to be more scatter in the SO, data.

NBSE for the limited amount of wet SOZ deposition data in 1978 is shown in
Fig. H.15, App. H. The data show that model sensitivity clustering is now governed by
WC (PS triplets) followed by Vg (PS triples). Wet deposition is least sensitive to the T,
(T, governs PS ordering within triples). Wet-deposition sensitivity patterns are discussed
in more detail in Sec. 5.2.2 for the more abundant 1980 and 1981 data.

Fractional error plots provide a means to visually display the relative
performance among various versions of ASTRAP model predictions. These plots show
how well or poorly model estimates, on the average, reproduce measured
concentrations. The additional information that can be obtained from the FE plots is in
the degree of bias or scatter error contained in each of the PS model predictions.
Ambient SOZ and SO, FEs for 1978 prediction-observation comparisons are illustrated in
Fig. 5.17. The individual seasons are given in Figs. H.16 and H.17. The clustering by
triples and triplets exhibited in the NBSE plots is retained in the FE plots. The same
best-fit triples and individual parameter sets within these triples identified in the NBSE
plots are also identified as producing the smallest relative error in these plots. The
ASTRAP mean predictions of SOg concentrations are within a factor of two of the mean
observations for all PS versions of the model when comparisons are unpaired in time and
space. When observations and predictions are paired in time (Fig. H.16), the high Vd and
T, triples for the winter; spring, and summer simulations are the only parameter sets
that are projecting SOg mean predictions greater than a factor of two of the mean
observations. If all the fall simulations are within a factor of two of the mean
observations, the scatter in mean SOq predictions is within a factor of two of the scatter
in mean SOZ observations for all PS versions. In the summer and fall, about half the
parameter sets overpredict the mean scatter in observations in the winter and spring.
Because of the greater sensitivity of soz air concentratigns to PS variations (e.g., Tr)’
versions of ASTRAP overpredict mean observations of SO, more than mean observations
of SO,. This is illustrated by the spread of the data in Fig_s. 5.17 and H.17. Figure H.18,
App. H, shows the FSE and FABE for the July 1978 wet SOy comparisons.

The sensitivity in mean (over all receptors) ASTRAP simulations of air
concentrations of monthly SOZ and SOZ to doubling and halving the internal model
parameters individually, while holding the other model parameters to the nominal
ASTRAP values, is given in Table 5.3. The mean predictions of the nominal or normal
version of ASTRAP are also listed in the table for comparison. The numbers in
parentheses are the absolute differences from the nominal ASTRAP predictions. As
expected, SOZ air concentrations are most sensitive to variations in Tr’ followed by
variations in V4 and WC. Sulfur dioxide air concentrations are most sensitive to
variations in Vg, followed by T, or WC. Because no one PS strc_:_ngly dominates
sensitivity, as WC does for wet deposition and T, does for ambient SOy, the triple and
triplet overlap in the NBSE and FSE plots (see Figs. 5.15, 5.17, and H.18) was greatest for
SO,. When all the parameters are doubled or halved simultaneously, these parameter
adjustments show the greatest sensitivity (more than the individual variation of
parameters) because 802 concentration predictions are changed in the same direction.
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FIGURE 5.17 Fractional Error of Sulfur Dioxide and Sulfate Air
Concentrations for Unpaired 1978 Predictions and Observations



TABLE 5.3 Sensitivity in Model Mean Sulfate and Sulfur Dioxide Air Concentrations (ug/ms) to
Variations in ASTRAP Internal Parameters

S0, 50,
Parameter
Ad justments? Jan. Apr. July Oct. Jan. Apr. July Oct.
Nominal (5i5) 7.3 10.9 8.1 31.7 1751 17.3 2258
(10)
2%V, 4.7 5.0 1.3 Gl 24.3 13.6 135 1577)
(63 (-287)  (-322)  (-331) (-300)  (-231) -(212) (-222) (-22%)
0.5 x Vy 8.1 9.5 14.3 10.3 38.3 20.3 20.8 2152
(13) 20%) (30%) (31%) (27%) (21%) (19%) (20%) (5%)
20%aT 10.8 1L 5 16.7 13.1 29.5 14.9 14.3 20.2
(12 (40%) (58%) (53%) (62%) (-7%2)  (-13%2) (-17Z) (-11%)
05 %l 4.1 4.5 6.7 5.0 33.0 18.7 19.5 24.5
(11) (-37%) (-38%) (-39%) (-38%) (4%) (9%) (13%) (8%)
2 x WC 55 6.2 8.7 7.1 28.5 15.4 14.4 2108
(19) (-15%) (-15%) (-20%) (-12%) (-10%) (-10%) (-17%) (-7%)
0.5 x WC 15 9.2 12.6 9.4 34.2 19.3 1755 24.6
(1) (15%) (26%) (16%) (16%) (8%) (13%) (1%) (8%)
2 x We, Vg, T, 6.6 6.8 9.1 8.2 20.8 11,1 9.8 1552
(27) (2%) (-7%) (-17%) (1%) (-34%) (-35%) (-43%) (-33%)
0.5 x WC, V4, T, 5.9 1/65) 10.7 1.4 43.17 25.8 24.8 32.3
(5) (-9%) (3%) (-2%) (-9%) (38%) (51%) (43%) (42%)
an = dry-deposition rate; s transformation rate; WC = wet-removal coefficient.
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For soz, on the other hand, the effect of simultaneously doubling or halving all
parameters produces the smallest changes in SOy air concentrations. This is because
increases (decreases) in Vd and WC decrease_(increase) SOZ concentrations, while
increases (decreases) in 1 increase (decrease) SOZ concentrations.

The sensitivitg ranges of ASTRAP mean monthly predictions of SOZ and SO, air
concentrations (ug/m*) in 1978 for the parameter adjustments considered are given in
Table 5.4. The minimum SOy predictions across the four seasons oceur when T, is low
and Vd and WC are high. The minimum SOZ predictions occur when all four* parameters
are low, while the maximum SOy predictions occur when T, is high or low and both V,
and WC are high. Since S04 concentrations and SO, concentrations are affected by T, in
the opposite manner, the extremes produced in these variables require PS variations to
be in opposite directions. The strong tendency toward negative bias (overpredictions) is
exhibited by mean observations in the lower fifth of the range in mean predictions for
SO4. Similarly, the strong tendency toward positive bias, in January and April, is
exhibited by mean observations in the upper fifth of the range of mean predictions for
80, simulations in January and April. This is consistent with our previous findings made
with residual histograms, scatter plots, and time-series plots (Sec. 5.1.1).

The relative dimensionless mean square error (RDMSE) or relative mean error,
expressed as a percentage of the mean square observation (MSO), is a fairly good
indicator of the percent overall bias and scatter error in model predictions. Table 5.5
gives the calculated RDMSE for the nominal version of ASTRAP and the parameter
adjusted versions producing the upper and lower prediction extremes just identified. The
relative mean error for the nominal version ranged from 4% (July) to 33% (October) for
SOZ simulations and from 18% (October) to 25% (January) for S04 simulations. The error
in the highest PS predictor was greater than the error in the nominal version for all S04
and SO, simulation cases. This error ranged from 49% (January) to 124% (April) greater
than the error_in the nominal version for 80y. The error in the lowest PS predictor
(No. 6) for SO4 was less than the error in the nominal version for October simulations,
while the error in the lowest PS predictor (No. 26) for SOy was less than or equal to the
error in the nominal version for all four months.

Table 5.5 also identifies the model PS providing the combined smallest and
largest bias and scatter as measured by DMSE, IOA, MLE, and VLE, and it gives the
RDMSE and the RSI for these best- and worst-performing model versions. These
calculations show that the nominal version outperforms (or nearly outperforms) all other
PS variations only for the April and July SOZ simulations. The model versions performing
best in the January and October 804 simulations outperformed the nominal version by 4%
and 29%, respectively. The nominal version of ASTRAP did not perform best for any of
the SO, monthly simulations. The RDMSE for the best and worst PS performers ranged
from 4% (PS 18 in July and PS 23 in October) to 209% (PS 6 in October) for S0y
simulations and from 12% (PS 4 in January and April) to 78% (PS 27 in July) for SO,
simulations. These ranges in error for the PS variations tested show that ASTRAP
performance sensitivity is much greater for SOZ simulations than for SO, simulations.

‘Vd for SO, and for SOZ are adjusted in the same direction simultaneously; thus, Va4
variation can be considered a two-parameter variation.



TABLE 5.4 Sensitivity Ranges in ASTRAP for Four Seasons of Simulations (uzlma)

SOZ 502

Perform.

Measure? Jan. Apr. July Oct. Jan. Apr. July Oct.
Fi 2.6-15.8 2.6-18.5 3.6-25.0 3.1-19.4 20.8-43.7 11.1-25.8 9.8-24.8 15.2-32°3
T LR=H L =H L-H Le—H H/L - L H/L - L H/L - L H/L - L
Vd HE=ET Hi=SL HE= T H=L L= n Tis=H Li="H L-H
WeC HE= Hi= L H-L H-L L-H LE=SH LE=0H L ='H
PS 26 6 26 6 26 6 26 6 6/5 217 6/5 21 6/5 21 1/6 27
0 Uil 6.4 11.1 5.3 43.4 22.8 20.3 24.17

aﬁi = mean prediction over grid cell i

T = transformation rate

Vi dry-deposition rate

WC = wet-removal coefficient

PS = parameter set

0 = mean observation over all grid cells.
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TABLE 5.5 Relative Mean Square Error (%) in Sulfate and Sulfur Dioxide Air Concentration Predictions

SOZ 802
Performance ps? Jan. Apr. July Oct. PS Jan. Apr. July Oct.
Lowest 26 140 86 144 25 5 i) 12 16 18
Nominal 10 12 7 4 33 10 25 24 19 18
Highest 6 61 131 72 209 217 75 74 78 47
Best overall 8(18) 5(19) 4(18) 4(23) 12(4) 12(4) 15(13) 15(6)
performance
RSI best 1.839 1.605 1.308 1.354 1.828 1.803 1.761 1.790
Worst overall 61(6) 131(6) 144(26) 209(6) 75(27) 74(27) 78(27)  47(27)
performance
RSIP worst 5.229 11.078 Sl 2 11.174 3.739 3.688 5.320 2.889
(6) (6)
5.219 5.388
(26) (26)

aps = parameter set.

PRSI = rank score index.

€8
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The highest predictor, PS 6 for soz , performed the worst for three gf the four months,
The lowest predictor, PS 26, performed the worst only for July SO, simulations. The
highest predietor, PS 27, performed worst for all four SO, simulation months. Best SO
performance came with high Vg and T, and low WC (PS 18) in January and July, normal
V4 and T, and high WC (PS 19) in April, and low V4 and T, and high WC (PS 23) in
October. Best 802 performance came with low Vd and WC and normal Tr (PS 4) in
January and April, low V4 and normal WC and T,, (PS 13) in July, and low V4 and WC and
high T, (PS 6) in October.

The four performance measures of bias error and scatter error used to compute
RSI for the nominal version of ASTRAP and the best- and worst-performance versions
(Table 5.5) are given in Table 5.6. These measures identify ASTRAP's SOZ performance
as being best for the summer and worst for the fall, and ASTRAP's SO, performance as
being best for the fall and summer and worst for the winter and spring. By decomposing
mean square error into its systematic and unsystematic components,* we can compute
the minimum systematic MSE achievable through the factor-of-two adjustments to model
parameters. Table 5.6 gives the percent MSE in ASTRAP predictions that results from
systematic and unsystematic causes. Also given are the computed MSE and its system-
atic and unsystematic parts, the minimum percent of systematic MSE achievable with PS
variation, the PS producing this minimum, the MSE components for this PS, and the
systematic error reduction potential (SERP) achievable with the PS adjustments we
used. The percent error that is systematic is small only for summer soz More than 70%
of the apparent model error is systematic for winter SOZ and SO,, spring SOy, and fall
SO predictions. The SERP is greatest (59%) for model predictions of fall SO4. Almost
10096 of the systematic error in summer SO4 can be removed by PS ad]ustment. The
remainder of the error is primarily unsystematie, which may indicate that not much
model performance improvement can be achieved for July, short of model reformation or
improving the spatial and temporal restriction of the meteorology, emissions, and net-
deposition sampling data base.

5.2.2 Seasonal Fluxes in Wet Sulfate Deposition

_The performance sensitivity patterns for ASTRAP simulations of summer 1980
wet SO, deposition are shown in the NBSE plot of Fig. 5.18. Comparisons of observations

*Systematic error is the error in the empirically derived data internal to the model (e.g.,
model PS), the model input to the data (e.g., to generate emission, wmd, and
precipitation fields), and the model evaluation data observed (e.g., SO and SO,
concentrations and wet SO4 deposition). Systematic error is assumed to be reduclble
error. Refer to Table 1.1 in Sec. 1 of this report for our definition of reducible error.
If the systematic error can be eliminated entirely, the remaining error (unsystematic
error) can be interpreted as the potential accuracy of the model. Error reduction that
would require model reformulation is considered in this report to be unsystematic
error. Strictly speaking, since our sensitivity study was restricted to variations only in
internal model parameters, the only reducible error available for our consideration was
the systematic error inherent to the four model parameter sets.
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TABLE 5.6 ASTRAP Sulfate and Sulfur Dioxide Air Concentration Seasonal
(monthly average) Performance and Systematic Error Reduction with Parameter
Variation

Winter Spring Summer Fall
Performance 2 s i
Measure® S0, 50, S0, S0, 80, S0, S0, S0,
I0A 0.60 0.62 0.56 0.61 0.83 0.75 0.45 0.72
VLE 0.229 0.232 0.058 0.163 0.056 0.198 0.076 0.158
DMSE 0.132 0.309 0.690 0.294 0.044 0.254 0.251 0.225
MLE 0.105 0.254 -0.118 0.240 0.059 0.109 -0.429 0.019
RSI 2,13 2.41 2.65 2.35 1.36 1.90 2.97 1.80
% MSE 27.9 14.3 73.3 16.2 91.6 47.0 23.9 39.1
% MSES 721 85.7 26.7 83.8 8.4 53.0 76.1 60.9
MSE 6.6 427.5 3.3 122.3 5.5 91.5 10.7 1311
MSE 1.9 366.5 2.4 19.8 5.0 43.0 2.6 51.2
MSES 4.8 61.0 0.9 102.5 0.5 48.5 8.1 79.9
Minimum 48.4 63.5 5.1 62.0 0.2 3359 1755 50.9
% MSE
s

Ps 18 5 19 5 18 4 25 23
MSE 2:30 270.7 1:9 87.6 5.9 86.8 17512 134.2
MSEu 1.65 171.1 1.8 36.1 5.9 4 57.4 1.02 65.9
MSE 1.60 99.0 0.1 51.5 0.0 29.4 0.47 68.3
SERPP 24% 22% 22% 22% 8.2% 19% 59% 10%
210A = index of agreement

5

variance logarithmic error
DMSE = dimensionless mean square error

MLE = mean logarithmic error

RSI = rank score index

MSE = mean square error

MSE, = mean square error unsystematic
MSEs = mean square error systematic
PS = parameter set

bSystematic error reduction potential is approximate.
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with all 27 versions of ASTRAP are represented. Each of the data points represents the
approximate midpoint of the NB and NS of three PS versions of ASTRAP (PS triple). As
for SO; and SOy, each triple is clustered in groups of three parameter sets (triplets)*
resulting from the factor-of-two adjustments to WC. (Triplets are arranged from left to
right by high, normal, and low WC.) The triples within each triplet are ordered from left
to right by V4. Parameter sets within each triple are now ordered by the T, in the same
way that WC ordered individual parameter sets for ambient SO, and SO4. The distance
of the data points from the origin in the NSBE plots is proportionately equivalent to the
RMSE. The normal WC triplet exhibits the smallest error (of the three triplets plotted)
for the summer simulations. The high-deposition-velocity triple within this triplet shows
the best overall performance, as measured by the smallest NB and NS error. This triple
(PS: 17, 16, 18) also has the smallest RMSE (3.8 kg SOZ/ha) of the nine PS triples
evaluated.

Figures H.19 and H.20, App. H, show the NBSE plots of wet SOZ deposition
simulations for each of the eight seasons in 1980 and 1981. The data show a negative

2
] Triplet Vq Triple Iie V4 — Deposition Velocity
1.8 N 3,1,2 HN,L T, — Transformation Rate
. LowWC | XL 6,4, 5 HN,L WC — Wet Removal Coefficient
1 _)_(H 9, 7,8 HNIL
1.6 - AN 11,10,12 L,N,H
e N°&'g°' OL 14,13,15 L,N,H
~ OH 17,16,18 L,N,H
Q -
b 1.4 AN 20,19,21 L,N,H
X | High wC WL 23,22,24 L,N,H
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3 1521 ==
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-
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FIGURE 5.18 Wet-Deposition Sensitivity Clusters for Summer 1980

*A triplet is composed of model predictions from nine separate PS variations of

ASTRAP, each of which is paired with the same set of observations.
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bias tendency in the winter and fall of both years and the spring of 1980. A much smaller
degree of bias, particularly for the normal WC and V4 triple, is exhibited in the plots for
both summers and for spring 1981. The NBSE patterns for wet deposition show that
ASTRAP simulations of wet SO4 deposition are not as sensitive to parameter variations
as ASTRAP simulations of SO, air concentrations. However, the ordering or positioning
of PS within each triplet for wet deposition is more sensitive to V, than is the case for
SOi air concentrations. Figures H.21 and H.22 show the seasonal NBSE. The best-
performing PS triples from the figures* are 12, 10, and 11 (DMSE = 0.13) for summer; 16,
18, and 17 (DMSE = 0.25) for winter; 17, 16, and 18 (DMSE = 0.14) for spring; and 3, 1,
and 1 (DMSE = 0.11) for autumn. Figure H.23 shows the NBSE for 1980 and 1981,
unpaired with four season groupings. PS triple 17, 16, 18 (DMSE) performs best for both
1980 and 1981 data, with DMSE = 0.206 for 1980 and DMSE = 0.147 for 1981. In this
case, if the minimum DMSE is used exclusively to rank performance, PS triple 6, 4, 5
(DMSE = 0.183) would be ranked as performing best for 1980. If the index of agreement
(IOA) is used, PS triple 17, 16, 18 would just barely outperform PS triple 6, 4, 5. Further
examination of the NBSE plots shows that the scatter error is smallest for PS 17, 16, 18
(which is ranked best by IOA) and the bias error is smallest for PS 6, 4, 5 (which is ranked
best by DMSE). Therefore, DMSE tends to favor the smallest bias error while IOA tends
to favor the smallest scatter error.

Fraction error plots for the winters and summers of 1980 and 1981 are shown in
Fig. 5.19. The same best-fit triples identified in the NBSE plots are also identified as
producing the smallest relative error in these plots. Figures 5.19¢ and d (summers) show
the ASTRAP mean predictions of wet deposition are within a factor of two of the mean
observations for all PS versions of the model (observations and predictions paired in
time). Spring 1981 (Fig. H.24) is the only other season in which the predictions from all
PS versions of ASTRAP were within a factor of two of observations. The scatter in the
predictions with the low WC triplet (nine PS) and the bias in the prediction with the high
WC and low Vd triple (PS 22, 23, 24) are a factor of two greater than the winter 1980
observations (Fig. 5.19a). Both the scatter and bias in the predictions with the high WC
and low Vd triple (PS 22, 23, 24) are a factor of two greater than winter 1981
observations (Fig. 5.19b). The parameter sets for other seasons (autumn 1980 and 1981
and spring 1980) with predictions not within a factor of two of observations are identified
in Fig. H.24a, ¢, and d.

The sensitivity of ASTRAP simulations of seasonal wet SOZ deposition to
doubling and halving the internal model parameters individually, while holding the other
model parameters at the nominal ASTRAP rates, is given in Table 5.7. The nominal

*These triples are also identified as performing best for the above seasons when the
DMSE is used exclusively as the performance measure.

tBec:ause of the tendencies of DMSE and IOA toward the smallest bias or smallest
scatter respectively, a8 combined measure was developed (RSI) using DMSE, IOA, MLE,
and VLE.
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FIGURE 5.19 Fractional Error Sensitivity for Winter and Summer, 1980 and 1981
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TABLE 5.7 Sensitivity in Model Mean Wet Sulfate Deposition (kg/ha) to Variations in ASTRAP

Internal Parameters

1980 1981
Parameter
Adjustments? W Sp Su F W Sp Su F
Nominal 4.5 10.4 11.4 8.6 4.3 7.1 9.2 8.4
(10)
2 x WC 6.8 13.2 14.4 11.3 6.7 8.8 11.3 10.1
(19) (+51%2)  (+#27%)  (+26%)  (+31%)  (+56%)  (+24%)  (+23%)  (+20%)
0.5 x WC 2.8 7.0 7.5 5.6 2.6 4.8 6.3 5.8
(1) (-39%2) (-33%) (-34%) (-35%) (-40%) (-32%) (-32%2) (-312)
22 YV 3.9 9.1 10.1 T1<5 3.7 6.2 8.0 Tud
(169 (-13%) (-13%) (-10%) (-13%) (-14%) (-13%) (-13%) (-13%)
0.5 x Vd 5.2 11,5 12.6 9.6 4.7 7=9 10.3 9.3
(13) (+#16%)  (+11Z)  (#11Z)  (+#12Z)  (+9%) (+11%)  (+#12%)  (+11%)
2 x T 4.6 10.5 11.5 8.7 4,35 12 9.4 8.5
(12 (+2%) (+1%) (+1%) (+1%) (+1%) (+1%) (+2%) (+1%)
0.5 % Tr 4.45 10.3 11.3 8.55 4.25 7.0 9.1 8.3
(11) (-1%) (-1%) (-1%) (-1%) (-1%) (-1%2) (-1%) (-1%2)
22 x WC, Vd’ Tr 5.9 11.9 1321 10.1 5.9 1.9 10.1 9.0
(27) (+31%) (+14%) (+15%) (+17%) (+37%) (+11%) (+10%) (+7%)
0.5 x WC, Vd’ 1 3.2 7.8 8.3 6.3 2.9 5.4 e 6.5
(5) (-29%) (-25%) (-27%) (-27%) (-33%) (-24%) (-23%) (-23%)

3Wc = wet-removal coefficient; Vits dry-deposition velocity; T

= transformation rate.
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ASTRAP mean predictions are also given in the table for comparison. As expected, wet
deposition is most sensitive to variations in WC. Doubling the coefficient increases mean
winter deposition by more than 50% and deposition in other seasons by 20% to 30%.
(Lower deposition amounts are the reason that the percentage change is larger in the
winter than in other seasons.) Cutting the coefficient in half reduces mean winter
deposition by about 40% and deposition in other seasons by 30% to 35%. The sensitivity
to doubling the V4 reduces wet deposition by 11% to 14%, and cutting the coefficient in
half increases wet deposition by 9% to 16%. The model simulations of wet deposition are
nearly insensitive to variations in the T. Doubling or halving all four model parameters
simultaneously affects wet deposition to a degree somewhere between that exhibited by
doubling or halving the WC and V4 individually. The increases (decreases) to wet
deposition incurred by this adjustment range from 11% to 20% (7% to 10%) less than
doubling (halving) WC alone.

The range in variation of ASTRAP mean predictions of wet SOZ deposition for
the parameter adjustments considered is given in Table 5.8. The minimum mean
predictions across the eight seasons of simulation oceur when WC is one-half its nominal
value, when the diurnal/seasonal variations in Vd are twice its nominal value, and when
the diurnal/seasonal variations in T, are at one-half or at its nominal value. The
maximum predictions across the eight seasons occur when the WC and variations in Tr
are twice the nominal value and when V4 is one-half the nominal value. Because of
model insensitivity to variations in T, when simulating wet deposition (due to the
application of the WC to both S04 and SOZ), the low WC and high V4 triple, and the high
WC and low Va triple, can be identified as the parameter sets representing the lower and
upper extremes in model predictions. The strong tendency toward negative bias
(overprediction) in spring and fall 1980 and fall 1981 is exhibited with mean observations
in the lower fifth of the range of mean predictions. This is consistent with our previous
findings made with the residual histograms, scatter plots, and time-series plots
(See. 5.1.2).

The RDMSE or relative mean-error, expressed as a percentage of the ratio of the
mean square observation and the square of the mean observation, is a fairly good
indicator of the percent overall error in model predictions. Table 5.9 gives the
calculated RDMSE for the nominal version of ASTRAP and the upper- and lower-extreme
prediction versions just identified. The relative mean error for ASTRAP ranges from 9%
(summer 1981) to 34% (fall 1980). The error in the highest PS predictor was greater than
the error in the nominal ASTRAP in all cases. This error ranged from 12% (summer
1981) to 155% (winter 1981), greater than the error in the nominal version of ASTRAP.
The error in the lowest PS predictor was greater than the error in the nominal ASTRAP
for only five of the eight simulated seasons. This error ranged from only 15% (winter
1981) to 32% (summer 1981) greater than the error in the nominal version of ASTRAP.
The error in the lowest PS predictor ranged from 10% to 20% in spring 1980 and fall 1981
to as high as 50% in winter 1980. The more favorable performance of the low WC and
high Vd PS triple compared with the performance of the high WC and low Vd PS triple
further supports the negative-bias (overprediction) tendency of ASTRAP, especially in
spring 1980 and fall 1980 and 1981.



TABLE 5.8 Sensitivity Ranges in ASTRAP for Eight Seasons of Simulations (kg SOi/hn)

1980 1981

Perform.

Measure? Winter Spring Summer Fall Winter Spring Summer Fall
Fi 2.8-7.7 5.9-14.3 6.5-16.1 4.8-12.4 2.3-7.7 4.1-9.8 5.5-13.1 5.0-11.5
WeC L-H [ =H L-H L =H o =St L =H L = H L=H
Vd HE =S L HE =S L H-L H =L H-1L He=00 H-1L H =g
Tr L/N - H L/N - H L-H L/N - H L/N - H L= H L = H L/N - H
PS 8/7 - 24 8/1 - 24 8 - 24 8/71 - 24 8/1 - 24 8 - 24 8 - 24 8/1 - 24
) 3.8 7.3 10.3 5.7 3.6 6.9 9.9 6.1

aﬁi = mean prediction over grid cell i

WC = wet-removal coefficient

Va = dry-deposition velocity
= transformation rate »

PS = parameter set
O = mean observation over all grid cells

16



TABLE 5.9 Relative Dimensionless Mean Square Error (%) and Rank Score Index in Wet Sulfate Deposition Predictions

1980 1981
Performance ps? Winter Spring Summer Fall Winter Spring Summer Fall
Lowest 8 50 12 32 17 37 37 41 10
Nominal 10 22 22 13 34 2.2 10 9 20
Highest 24 58 61 34 84 17 23 21 a3
Best overall 21(18) 8(3) 12(18) 14(3) 19(17) 10(11) 9(10) 7(1)
performance
RSIP best 2.804 1.510 1.502 1.752 1.946 1.469 1.442 1.390
Worst overall
performance 58(24) 61(24) 34(24) 84(24) 77(24) 37(8) 41(8) 53(24)
RSI worst 4.312 3.871 2.424 4.379 4.489 2.649 2.731 3.391

4ps = parameter set.

bRST = rank score index.

6



72

Table 5.9 also identifies the model PS providing the combined smallest bias and
scatter as measured by DMSE and IOA, and MLE and VLE,* and the RSI for these model
versions, and it gives the RDMSE. These calculations show that the nominal version of
ASTRAP (or a slight modified version, with low TR) performed best for the summer and
spring 1981 simulations. The model versions (high V4 and T, and normal WC triple)
performing best in summer 1980 and winter 1980 produced results that were not
significantly better (only about 1%) than the nominal ASTRAP. The model versions that
had performed best in spring 1980 and fall 1980 and 1981 outperformed the nominal
ASTRAP by only 14%, 20%, and 13%, respectively. The RDMSE for the best and worst
PS performers ranged from 7% (PS 1, fall 1981) to 21% (PS 18, winter 1980) for the best
and from 34% (PS 24, summer 1980) to 84% (fall 1980) for the worst. The highest
predictor, PS 24, performed the worst for six of the eight seasons. The low WC and
normal Vj triple (1, 2, 3) and the normal WC and high V4 triple (16, 17, 18) performed
best in spring and autumn of 1980, autumn of 1981, winter of 1980 and 1981, and summer
of 1980. The normal WC and Vq triple (10, 11, 12) performed best in the two remaining
seasons. The seasonal performance ranking of best, worst, and nominal PS by RDMSE
will not match the same ranking by RSI, because RDMSE places a larger weight on the
smallest bias error. Best and worst triples based on grouped statisties (combined seasons,
paired and unpaired in time) are given in Table H.2, App. H.

The four performance measures of bias error and scatter error used to compute
RSI for ASTRAP and the best and worst performance versions (Table 5.9) are given in
Table 5.10, along with RSI for the nominal version of ASTRAP. These measures clearly
identify ASTRAP's performance as being best for the summer seasons and for spring
1981. The measures also indicate worst performance in the winter and fall of 1980.

It is now easy to see the relative rankings among the seasons for which ASTRAP
performs well and the relative rankings among the seasons for which ASTRAP performs
poorly. The combined index shows the closeness of performance within the three best
seasons, the two worst seasons, and the three seasons (fall 1981, winter 1981, and spring
1980) with intermediate ASTRAP performance. As indicated previously for air
concentrations, additional measures are needed to determine the degree of potential
improvement that can be achieved in model predictions by parameter adjustment. By
decomposing mean square error into its systematic and unsystematic components, we can
compute the minimum systematic MSE achievable through the factor-of-two adjustments
to model parameters. (See footnote on page 84.) Table 5.10 gives the percent MSE in
ASTRAP predictions that results from systematic and unsystematic causes. Also given
are the computed MSE and its systematic and unsystematic parts, the minimum percent
of systematic MSE achievable with PS variation, the PS producing this minimum, the
MSE components for this PS, and the SERP achievable with the PS adjustments used.
The largest systematic MSE occurs for model simulations of wet deposition where

*As noted earlier, DMSE tends to be a bias measure and IOA tends to be a scatter
measure. When ranking performance, because best performance is indicated by the
largest IOA and the smallest DMSE, the inverse of IOA is added to the sum of DMSE,
MLE, and VLE to get an overall ranking index, the rank score index (RSI).
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TABLE 5.10 ASTRAP Seasonal Performance and Systematic Error Reduction Potential
with Parameter Variation

Winter Spring Summer Fall
Performance
Measure? 1980 1981 1980 1981 1980 1981 1980 1981
I0A 0.493 0.673 0.629 0.822 0.850 0.849 0.565 0.700
VLE 0.262 0.242 0.121 0.116 0.138 0.100 0.215 0.135
DMSE 0.274 0.272 0.242 0.114 0.161 0.110 0.398 0.230
MLE -0.246 =-0.197 =0.351 0.015 -0.055 0.054 -0.405 =0.315
RSI 2.82 2.20 2530 1.47 53 1.44 279 2.1
z HSEu 28.2 64.3 47.3 90.8 90.7 92.5 50.2 47.3
% HSES 718 3557 52T 9.2 9.3 o5 49.8 5257
RMSE 217 2.00 4.28 2.38 4.32 3.07 4.39 3.38
RHSEu 1.16 1.61 2.94 2217 4.11 2.96 3.11 2.32
RHSES 84 1.20 3.11 0.72 1.32 0.84 3.10 2.45
Minimum L7 3302 31.1 7eel 6.2 2.4 35.6 1251
% MSE
s
PS 11 18 17 26 18 26 5 3
RMSE 2.16 1.76 3.20 2.86 3.91 3.69 2.47 1.64
RHSEu 1oL5 1.44 2.66 2.75 3.78 3.65 1.98 1.54
RHSEs 1.83 1.01 1.79 0.76 0.97 0.57 1.48 0.57
serpb <1% <3% 22% <3% 3% 5% 14% 41%
810A = index of agreement

VLE = variance logarithmic error

DMSE = dimensionless mean square error

MLE = mean logarithmic error

RSI = rank score index

MSE, = mean square error unsystematic
MSE_ = mean square error systematic

RMSE = root mean square error

RHSEu = root mean square error unsystematic
RHSEs = root mean square error systematic
PS = parameter set

bSystematic error reduction potential is approximate.
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ASTRAP performance is fair to poor. Almost 72% of the winter 1980 simulation error is
systematic. Although this represents the largest percentage of systematic error of the
eight seasonal wet-deposition simulations, the SERP is less than 1%. Because the wet
chemistry monitoring network (Acid Deposition Monitoring system) was just really
getting started in late 1979 and early 1980, systematic error in sample collection and
analysis could be a significant cause for poor model performance over this period. The
SERP is also small for the winter, spring, and summer of 1981. The difference in these
simulations is that the apparent systematic error in nominal ASTRAP predictions and is
less than 10% of the total apparent error. In these cases, the observational error may
not, with the exception of the winter 1981, be as significant a contributor to the
systematic error as it was in the winter 1980 simulations. The basis for this exception is
the documented systematic undercatch error in precipitation sampling, which is a result
of wind field deformation above the rain gauge orifice (more predominant with the
elevation of the orifice above the ground), wetting losses on internal sampler walls,
evaporation losses, snow blowing and drifting, and splash-out or splash-in. The
systematic undercatch in precipitation has been estimated, from experimental data
collected in Europe and the USSR with the pit gauge as the reference, to vary from 3%
to 30% annually and as much as 50% or more for individual episodes (Rodda et al. 1985
and 1986, Sevruk 1982). The systematic undercatch, although more significant in the
winter, may also contribute to a good portion of the systematic error in spring 1980 and
fall 1980 and 1981. SERP ranged from 14% to 41% for these periods, which may be
caused not only by the occasionally significant snowfall in Canada and northern states in
these periods but also by the systematic undercatch of rain resulting from the same
physies causing snow undercatch in nonpit rain gauges. The very small systematic error
and SERP for spring 1981 and summer 1980 and 1981 may indicate that not much model
performance improvement can be achieved over these periods except through model
reformation or the preparation of a high-resolution (spatial and temporal) meteorology,
emissions, and wet-deposition sampling data base.

5.3 ERROR DECOMPOSITION AND SPATIAL ERROR PATTERN ANALYSIS

The preceding discussion relied primarily on the use of distributional statistics to
quantify and express apparent error in model predictions. Error was expressed in terms
of residuals, scatter or variance, and mean squares, including the systematie and
unsystematic portions of the mean square error (MSE). Although we now have a better
picture of how ASTRAP performs, we are still missing some key elements needed to
understand this performance. We need to be able to express the apparent error in terms
of its bias, temporal, and spatial error components, and to graphically display and
quantify the spatial error component. We propose to do this by the analysis of variance
through the decomposition of MSE and through analysis of variance with regression
analysis and decomposition of explained variance (in Sec. 5.3.1), and through display of
spatial patterns that are optimized in an MSE sense (method described in See. 5.3.2).

5.3.1 Separation and Computation of Bias, Temporal, and Spatial Error Components

The MSE for a set of space-time observations and predictions can be decomposed
into three parts through analysis of variance (ANOVA) (Ball 1986). This decomposition of
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error could be important in understanding what and where the weak links in the model
and the model input data may be.

Suppose we have a series of predictions P; and observations O;; at M locations
(index i). At each location i (receptor grid, 130 x 130 km), there are K; observations in
time (index k), for a total of N = z K. observation/prediction pairs. Equation 4.5 for
MSE in Section 4.2.1 can now be written as:

el
MSE—N

"
ne—x

1z(i[o e N 5.1
il (R =)

The mean values over time at each location i are given by:

Eoats
<0i> = -K—; kzl 0]..k (5.2)
SB.PA= : gi P, (5.3)
i W o il x

<<0>> = = (0 = K. <0f> (5.4)
palopmg F | Wigpasida
e I
cpesi=te Z Z Bl Z K, <P.> (5.5)
i=1 k=1 i=1

Equations 5.2 through 5.5 can be used to define, for ease of notation, the mean
residual at location i over all time, and the overall mean residual or bias over the entire
field of values as:

<1—i> = <oi> - <Pi> (5.6)

<<r>> = <<O>> - <<P>> (5.7)



In terms of these definitions, we can rewrite Eq. 5.1 as the sum of three terms:

_ N-M M-1 2
MSE = N

MSTE + - MSSE + <<r>> (5.8)

where MSTE is the mean square temporal error given by:

e
= S R R TR 455)
i=1 k=1

which can be related to the ANOVA notation as the sum of squares within groups, as
SSg = (N - M) MSTE.

MSSE is the mean-square spatial error given by:

MSSE = i% K, [<r, - <<e>>)? (5.10)

i i

I|‘M =

i=1

which can be related to ANOVA notation as the sum of squares between groups,
S8y, = (M - 1) MSSE.

In order to make the comparison of error totals across seasons meaningful, it is
necessary to normalize the MSE in Eq. 5.8 by the product of the interannual mean
observation and prediction (the combined mean value of like seasons of different years).
Equation 5.8 then becomes:

omsE = X =¥ ys7E + B =L MssE + L <<r>>? (5.82)
N-0-P N-

0-P 0-p >

We now have a means to separate error into its temporal, spatial, and bias
components. These components provide a means to represent the composition of error in
model simulations for particular seasons. The temporal component is a measure of the
ability of the model and model input data to account for interseasonal variations in
meteorology and emissions. The significance of this measure may be highly dependent on
the number of available data years and can be greatly influenced by meteorological
variability from year to year. The spatial component is a measure of the ability of the
model and data base to accurately represent the spatial patterns in deposition and air
concentrations. These patterns are highly contingent on the model representation of
wind and precipitation fields. The significance of this measure is dependent upon the
spatial distribution and the number of receptor sites. Finally, the bias component is an
expression of the residual error or the overall systematic bias over the entire field of
values.

Dividing each of the terms in Eq. 5.8a by DMSE provides a way to express the
temporal, spatial, and bias error components as a percentage of the total error. These
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components (TE, SE, and BE) are provided in Table 5.11, along with the bias, temporal,
and spatial error ratios (BER, TER, SER), and the ratio of spatial to temporal error
(STER). The first three ratios are error fractions of the interseasonal mean (for BER)
and the interseasonal mean square observation. The STER values given provide some
idea of the relative importance of spatial error to temporal error. An F-test of this ratio
can be interpreted as a test of the hypothesis that the spatial differences are not random
but are statistically significant. One can expect real or significant differences in the
magnitude of bias errors among sites or regions when STER is larger than about 1.5. This
suggests that the variations in error among regions for the winter, summer, and fall
simulations are significant. These ratios can give a misleading picture, however, if the
bias error component is a significant fraction of the total error (i.e., greater than 20%).
The error ratios show that the spatial and temporal error ratios are 2 to 18 times larger
than the BER. An examination of the contributions to total error shows that the spatial
error dominates, accounting for over 70% of the total in the winter, spring, and
summer. These statisties give the first indication of the apparent dominance of the
spatial error component and suggest that the model is not doing well in representing
spatial patterns (see the following discussion on explained variance and the discussion in
Section 5.3.2). The autumn simulations show dominance of the spatial-error and bias-
error components, with a small temporal-error component. The relatively small
temporal-error component across all seasons, particularly winter and autumn, may be the
result of the statistically small number of seasons considered in the analysis. With only
two years of data available for analysis, only two points contribute to the variance at
each site. Because of the relatively large size of the total error in autumn, the autumn
spatial error (DMSES = 0.148) is only slightly larger than the spatial error for the spring
(DMSES = 0.122) and summer (DMSES = 0.110). In addition to representing the largest
percentage of the total error, the spatial error for the winter simulations (DMSEg =
0.216) is 60% to 95% larger than the spatial error for the other seasons. The absolute
bias error for the autumn simulations is from 4 to more than 100 times larger than the
bias error in the spring, summer, and winter simulations.

We previously computed the explained variance of model predictions over
individual periods or seasons (Section 5.1.2). Now we will report the explained variance
in terms of a temporal and spatial component. To do this, it is useful to pick up aspects
of ANOVA and combine them with a regression analysis (Ball 1987). The regression
model definitions for the total sum of squares of the observations (SSTO), the sum of
squares error (SSE), and the sum of squares regression (SSR) follow:

SSTO = _zk (0, - <<0>>)? = (- 1) o ° (5.11)
1,
= S 2
SSE = izk (0, “= B )= N - (MSE) (5.12)
SSR = ) (Eik - <05y’ = (W - 1) ¢ 0.2 (5.13)

i,k P



TABLE 5.11 Temporal, Bias, and Spatial Error in ASTRAP Predictions of 1980 and 1981 Wet Sulfate Deposition

Bias Componentsa Temporal Componentsb Spatial Componentsc

o/pf MBE BE RMSTE TE RMSSE SE

geason M4 N®  (kg/ha) DMSE®  (kg/ha) BER (%)  (kg/ha) TER (2) (kg/ha) SER (%)  STER

Winter 46 57 3.62/ 0.273 -0.76 0.21 13.3 1.29 1.28 1.4 2.08 1.09 79.3 2.64
4.38

Spring 59 17 7.12/ 0.174 -1.18 0.17 13.5 2.62 2.82 17.0 3.13 1.05 70.3 1.29
8.29

Summer 70 93 9.69/ 0.136 -0.34 0.04 1.0 2.88 0.74 11.6 3.87 0.58 80.8 2.33
10.03

Autumn 73 101 5.79/ 0.302 -2.68 0.46 48.4 1.73 0.70 2.8 3.18 1.43 49.1 6.93
8.47

4Bias Components

e Mean Bias Error (MBE)
e Bias Error Ratio: BER = MBE/D .
o Bias Error: BE = (MBE)2/DMSE * 0 * P

bTemporal Components

e RooL Mean Square Temporal Error (RMSTE)
o Temporal Error Ratio: TER = MSTE/MSTO
e Temporal Error:

TE = (N - M)/N * MSTE/DMSE * 0 * P

Cspatial Components

Root Mean Square Spatial Error (RMSSE)

Spatial Error Ratio: SER = MSSE/MSSO

Spatial Error: SE = (M - 1)/N * MSSE/DMSE * 0*P
Spatial-Temporal Error Ratio: STER = MSSE/MSTE

dM = number of sites producing at least one observation/
prediction pair.

€N = number of observation/prediction pairs.
£5/P = mean observation/mean prediction.

BDMSE = dimensionless mean square error.
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where:
0]..k = observational field,
;ik = regression of model predictions, and
Aik = a +b Oy, the linear least-squares regression model.

We now can define the coefficient of determination (Rz) as:

288 NS STON= SSE S S5SRIE N
~  SSTO = SSTO g 2 (5.14)

W SSE
e (5.15)

Using Egs. 5.14, 5.12, and 5.13, RZ can be defined in terms of MSE:

ele el ) B
R-wiy (N—l)az (5.16)
o

The sigma ratio in Eq. 14 is valid for a regression model but not valid when E’ik is not a
least-squares regression fit to O;,.. In other words, it is no longer true that SSE + SSR =
SSTO. This is because the observational data set, Oik’ does have measurement error. (It
should also be noted that the overall mean of observations, <<O>>, is also the mean of
the regression model, <<P>>, but this is not true when there is an overall bias.) Because
of this error, to not penalize the model, a slightly modified definition of R? seems
appropriate. First, a new sum of square error is defined as follows:

' = * 2
SSE' = izl [05, = (s50>>) =.(F, - ~<cpaz)] (5.17)
Removing bias from Eq. 5.12 yields:
SSE' = N [MSE - (BIAS)Z] (5.18)

Using Egs. 5.17 and 5.18, the bias term can be defined as:

BIAS = <<0>> = <<0>>
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Now the explained variance in model predictions can be defined in terms of the
total variance in the observations minus the unexplained variance or error in observations
as:

p'2 - SSTO - SSE' _ | _ SSE'
SSTO SSTO

Using Egs. 5.18 and 5.14, the explained bias-corrected variance (EBCV) can be expressed
as:

2
Yoo N MSE - (BIAS)
RSl e ) 7 (5.19)

o

By using the following definitions for mean square temporal observation (MSTO), mean
square spatial observation (MSSO), and observed variance (ao ), and Egs. 5.9 and 5.10, the
explained variance can now be decomposed to a solely spatial, plus a solely temporal
component (the bias component has been removed).

)
2
- [0. - <0.>]
_ai=l it 1
MSTOR=S == (5.20)
N
izl Ki [<°i> - <<o>>]2
MSSO = e (5.21)
2 N uM MESHL
£ P+ 7 HSEO . (5.22)

]
With some manipulation, it can be shown that the EBCV (R‘z) can be expressed as the
sum of a temporal component and a spatial component:

N-M MSTO 2 Ml MSSO 2
= 2 LD e i 5.23
EBCV <N-l> 7 R +<N_l> 7 By (5.23)
g a
o
where:
R R w, the temporal error component of EBCV, and
£ MSTO
SO - MSSE
Rs2 = M—Sﬁso—, the spatial error component of EBCV.
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As these components approach 1.0 (as MSTE and MSSE approach zero), EBCV
approaches 1.0, and the model can be said to explain all the variance in the observations.

Now the EBCV and its temporal and spatial components can be computed for
interseasonal comparisons of wet sulfate deposition observations and predictions in 1980
and 1981. The results from these computations are summarized in Table 5.12. The table
provides the EBCV and the size of its temporal (TVE) and spatial (SVE) components, all
expressed as percentages of the total explained variance in observations. The temporal
and spatial error components (Rt and R.®) are also given, ranging from less than or
equal to zero (mean square error is equal to or greater than the mean square observation)
to 1.0 (mean square error equals zero). As the spatial or temporal error components get
larger, the spatial or temporal error variances get smaller. The data variances show that
the model's ability to explain variance in summer simulations (over 40%) is substantially
better than its ability to explain variance in winter, spring, and autumn simulations. This
difference in ability results from the model's improved ability to explain spatial variance
in the summer simulations examined. More than 90% of the EBCV in the summer results
from the ability to explain spatial patterns. The negative EBCV values indicate that the
model does not do very well in explaining the observed interannual variance in
nonsummer seasons. The computed SVE ranged from -43% for autumn simulations to

TABLE 5.12 Explained Variance in ASTRAP Predictions

TVE® SVEP Total
Season (%) th (%) Rs2 EBCVE (%)
Winter =2,0 -0.28 -8.4 -0.09 -10.4
Spring =14 T0REE =1 783 =40 -0.04 -19.0
Summer 2.6 0.26 38.3 0.43 40.9
Autumn -0.9 -0.09 =-43.2 - -0.48 =441

8TVE = Temporal variance explained, expressed as a
percent of the total explained variance:
N-M MSTO 2
(—N_l) =3 ~ R oHE
o

TVE =

bgyg = Spatial variance explained, expressed as a
percent of the total explained variance:

M -1, MSSO 2
—-N_l] == - -ilom

g
[¢]

SVE = (

CEBCV = Explained bias-corrected variance.
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slightly over 38% for summer simulations. The model appears to not do well in
explaining temporal variations, but this result must be viewed with caution because of
the limited amount of data available (only two years) at the initiation of our study.

5.3.2 Spatial Air Concentration and Deposition Error Patterns

ASTRAP shows a limited ability to simulate spatial patterns of observed wet
sulfate deposition. To see this more clearly, a technique to display spatial patterns in
observations and predictions is needed. Several contour mapping techniques are available
for this purpose, such as distance weighting, ordinary and generalized linear least
squares, and polynominal least squares. Most classical techniques for computing surface
contours to determine spatial trends are based on assumptions that the observed data can
be represented by a polynominal or piecewise polynominal surface through a least-
squares fit of the data and that the deviations from a smooth surface are assumed to be
random errors (Goodin et al. 1979, Ripley 1981, McLarin 1974). Distance weighting
techniques are based on the assumptions that the physical and chemical processes that
affect a specific site also affect points nearby and that the effect of the specific site on
nearby points can be assumed to be a funetion of the distance of separation (e.g., inverse
distance, inverse distance squared). Ordinary least-squares techniques approximate drift
between data points with a linear or polynominal least-squares regression. These
techniques suffer from a number of weaknesses such as subjectively determining the
weight function, neglecting the possibility that the interpolation errors may have
covariance, and not providing an estimate of interpolation errors.

The contour mapping technique chosen should have several key attributes. At a
minimum, it should preserve the main characteristics of the data by smoothing through
inherent random data variability. The technique should retain the important spatial
features of the data and should not be unduly influenced by values at single points.
Ideally, the degree of variability in the data should influence the degree of smoothing,
and the uncertainty in the interpolation estimates that are produced should be provided
(Clark et al. 1987a). These desired attributes are for the most part inherent to a
geostatistical interpolation technique known as kriging. Kriging is designed to minimize
the overall variance between the true values and the estimated or interpolated values.
The contours produced by kriging are, under certain conditions, designed to be optimal in
a mean square sense. The weighting functions used in the interpolation are a function of
the spatial distribution of data points and the inherent variability in the data. The
approach is based upon the theory of regionalized variables, which is designed to
mathematically describe geophysical properties distributed in space and/or time and
provide an appropriate means for solving spatial estimation problems (Matheron 1971).
The technique was used extensively in the 1960s and 1970s in geology (mineral
exploration), oceanography, meteorology (rainfall and geopotentials), hydrology (water
table heights), radiochemistry (geographical distribution of radionuclides), and more
recently in the analysis of spatial trends in acid-precipitation data (Finkelstein 1983,
Bilonick 1985, Eynon and Switzer 1983).
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Kriging is not a single method but a family of interpolation techniques. Two
basic approaches, universal and simple, are most often applied. The simple or ordinary
kriging method has been used almost exclusively to spatially extrapolate acid-
precipitation data. This method is dependent on the assumption that the underlying
process is stationary (i.e., that the expected value of the process does not vary
appreciably over distances between the data points and the interpolation points). The
drift or trend between data and interpolation points is assumed to be constant. If the
trend cannot be assumed constant (i.e., is nonstationary), a linear combination of
predictors (e.g., polynominal terms) is introduced into the system of equations used to
determine interpolation weights. This introduction of terms to account for a varying
trend is known as the universal kriging method. Since the method relies on the
preselection of the functional form of the trend and the error covariance, if the wrong
form is chosen the bias in the interpolated variance may be worse than that obtained
from simple kriging (Seilkop 1983). Oden (1986) has developed a graphical inspection and
a spatial autocorrelation method to test the adequacy of the trend and/or error
covariance functional form and to provide a means to alter the funetions, if necessary,
through parameter variation. This approach is sometimes referred to as generalized
covariance kriging (Dennis and Seilkop 1986). A detailed description and the full
mathematical treatment of the spatial autocorrelation fitting of the drift estimator used
in the covariance kriging algorithm can be found in Oden (1986). The computational
details of simple and universal kriging are provided in App. K.

Both simple and generalized covariance kriging (Oden 1986) were investigated for
evaluating spatial patterns of observed and predicted SOZ/SO4 air concentrations, wet
sulfate deposition, and the difference in those patterns. Due to difficulty in properly
interpreting anomolies appearing in the generalized covariance kriging output, the results
are reported in App. I without discussion. Our analysis is based upon the comparison of
spatial patterns of simple kriging results. The level of spatial analysis used in this study
is not as quantitative as the analysis used in the ISDME study (Clark et al. 1987a). A
scaled down analysis was done for three reasons. First, because of the lack of grid point
ASTRAP predictions, spatially kriged predictions (from observed evaluation sites to these
grid points) could not be compared with the true ASTRAP grid point values. Without
such a comparison, we could not fully determine how well the kriging routine reproduced
the true model predicted spatial patterns. The counterpoint would be that if the
predicted spatial patterns were determined on this basis, the kriged observed spatial
patterns would not have the same advantage of a spatially uniform and dense set of
interpolation data points. Second, the sophisticated statistical mathematical technique
used to derive the kriged weighting functions can often overlook the fact that there is
little physical justification for a model represented by Z(X) = ZwiZi(X), where w; is
statistically derived spatial weighting functions* (Venkatram and Pleim 1985). A counter
argument can be made, stating that the physical processes that govern wet-deposition
spatial patterns (i.e., precipitation and wind fluctuation) are highly stochastic and that a

*The spatial weighting function provides interpolation weights that depend on the
covariance structure of the regionalized variable, Z(X). The function Zi(X) is a random
function composed of a stochastic component and a deterministic or trend component.
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model that attempts to account for this is therefore justified. Finally, sufficient
resources were not available to conduct an analysis at the level used in the ISDME
study. Because ASTRAP was one of the models evaluated in this study, however, more
quantitative results could be used to support our data interpolation and analysis.

The ability of the model to reproduce the air concentration and deposition spatial
patterns inherent in the observations is assessed in our study by comparing the positions,
shapes, and magnitudes of the observed and predicted patterns. The differences in the
position of the patterns are determined by comparing the relative locations of the
observed and predicted high-deposition fields and the orientation of the major axis of
each field. The differences in the shapes of the patterns is determined through careful
inspection and comparison of the kriged contour maps. This approach was also used to
compare the differences in the locations and magnitudes of observed and predicted
maximum air concentrations and deposition. It should be emphasized that our use of all
these comparative measures is qualitative but nevertheless useful when used with the
more quantitative results presented in the previous section of this report (Sec. 5.3.1).
Refer to the ISDME report (Clark et al. 1987a) for how these and other spatial measures
can be quantitatively treated.

Simple kriged contours of observed and predicted SOZ air concentrations are
shown in Fig. 5.20 for January and July and in Fig. 5.21 for April and October. The
contours of the predictions are generally smoother than those of observations, and the
predictions tend to exhibit a single "hot spot" (maximum area). More detail is present in
the observed contours, with a tendency toward multiple hot spots. The orientation of the
major axis of the prediction contours is east-west for all months but July, when it is
southwest-northeast. In contrast, the observed contours are shaped more irregularly,
with distinetly different patterns for each month. Multiple observed hot spots occur in
January and April, and multiple secondary hot spots occur in Oectober. Major axis
orientation is predominantly southwest-northeast. The January predicted maximum
oceurs in the mid-Atlantic states, while the observed January maximum occurs in
Tennessee and Ohio. The predicted July maximum is reasonably close to but somewhat
east of (approximately 300 to 350 km) the observed maximum. The two observed
(Tennessee and Vermont) April maxima are represented by a single predicted maximum
area, approximately 450 km northeast of the observed maxima in Tennessee and 450 km
south of the observed maxima in Vermont. A rather broad area of predicted maximum
October concentration is shown in Fig. 5.21(d) (southern Pennsylvania, New Jersey,
northern West Virginia, Maryland), while a more localized area of maximum
concentration is shown in Fig. 5.21(c) for observations (southwestern North Carolina and
northwestern South Carolina). The ratios of the magnitude of the predicted to observed
maximums are approximately 1.3 in April and October, 1.0 in July, and 0.7 in January.

The comparison of kriged (simple) predictions and observations in Figs. 5.22
through 5.25 provides a visual means of assessing how well ASTRAP reproduces observed
spatial patterns of wet soz deposition. The general spatial features of the obser\{ed
patterns are more heterogeneously detailed than are the predicted patterns, showing
multiple peak deposition areas in the summer 1981 and varied contour orientations and
shapes. In contrast, the predicted patterns show less variation in characteristics from
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FIGURE 5.20 Simple Kriging Contours of Observed and Predicted Sulfate Air Concentrations
for January and July, 1978



(b) April

(a) April |
Predicted

Observed

(d) October

(c) October
Predicted

Observed
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FIGURE 5.24 Simple Kriging Contours of Observed and Predicted Wet Sulfate Deposition
for Spring and Autumn, 1980
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season to season. The irregular contours for 1980 winter predictions and observations
probably result, in part, from the sparse spatial density of observation sites available
(only 25 data points to represent eastern North America).* A comparison of patterns of
high and low deposition shows that ASTRAP tends toward substantial overprediction in
low observed deposition areas and substantial underprediction in high observed deposition
areas for winter and autumn simulations. These tendencies are not indicated in the
summer and spring simulations.

The largest difference in the orientation of the major axis between observed and
predicted patterns occurred with the 1980 winter comparisons. The predicted spatial
pattern seems to be rotated a full 180 degrees from the observed spatial pattern. In
addition, the range of distances of separation between observed and predicted peak
deposition areas is greater for winter 1980 than for all other seasons analyzed. This is
because a rather large area was defined by the kriged prediction, from which the peak
predicted deposition could be located. The separation of predicted and observed maxima
for the other seven seasons ranged from approximately 50 to 100 km for the summer to
about 800 km for the autumn. The ratios of peak predicted to peak observed deposition
exceed 1.0 for all seasons except winter 1980, with a ratio of 0.75. The spring 1980 ratio
is the largest, exceeding 1.4. The geographic location of the observed winter and autumn
peak deposition was in south central Ontario (east of Lake Superior), while the predicted
winter (except 1980) and autumn peaks occurred in western or northwestern Pennsylvania
and/or eastern Ohio and western New York. The summer and spring predicted peak
deposition occurred primarily in south central or southwestern Pennsylvania or eastern
Ohio and western Pennsylvania. The peak observations in the summer and spring seemed
to be located slightly east or south of the peak predictions. The observed double peaks in
summer 1981 are located 50 km south-southwest and 50 km north-northeast of the
predicted peak summer 1981 location. Table 5.13 provides a summary of the major
differences in observed and predicted spatial patterns.

To determine if these differences in observed and predicted spatial patterns are
statistically significant, quantitative results are needed. The ISDME analysis of the
geographic area where ASTRAP simulations significantly over- or underpredict
observation provides such results. Figure 5.26 shows the boundaries of the four
subregions used in the ISDME study (Clark et al. 1987b). The size of the geographic area
of significant differences between kriged predictions and observations was the primary
measure used in the study to determine how well ASTRAP (and ten other models)
reproduced the observed spatial patterns. When the interpolated predictions fell outside
the uncertainty range of the observations, differences in the kriged observations and
predictions were deemed significant (explained in next paragraph). The size of the

*In addition, this spatial irregularity could also be the result of kriging predictions based
on validation sites rather than much more uniform and densely distributed model grid
point coordinates. The influence of this on kriged patterns can be seen in the more
detailed (winter) and the smoother and more regularly shaped concentric ellipses
produced for the 1980 seasonal ASTRAP predictions in the ISDME study (Clark et al.
1987a).
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TABLl.! 5.13 Comparison of Observed and Predicted Spatial Patterns of Wet Sulfate
Deposition — Simple Kriging for 1980 and 1981

Location and Magnitude of Maxima

Pattern Shape; No. of Est. Est.
Relative Deposition Orientation a? Maxima Mag. (kg Separ.
Season Gradient of Major Axis (deg) Locations Area 50;/ha) Clam) Geography
Wincer 1980 180° 300-
(8.7°) 1600
predicted  Irregular; small Northeast- 1 REG III; 6 Indeterminant
southwest VI.b and d; %
VII.a and b
Observed Irregular; localized Northwest- 1 REG VI.c.4.7 S.E. Ontario
large southeast
Winter 1981 90° 450~
950
Predicted Elliptical; small Northeast- 1 REG VI.a, 8 E. Ohio-
southwest b and c We NeYo=
W. Penn.
Observed Irregular; moderate North-south 1 REG I.d.7. 7 Ontario-E.
Lake Superior
Summer 1980 15% 10-350
(8.5°)
Predicted Ellipcical; large East-westC 1 REG VI.b.8; 24 S.W. Penn.
d.2
Observed Ellipcical; large East-west 1 REG IV.b.2, 20 S«E. Ohio
3,5,6,8
Summer 1981 45° 240~
360
Predicted Elliptical; moderate East-west 1 REG VI.d.2,5 20 S. Cen.
Penn.
Observed Irregular; moderate Seems to be 2 REG VI.c.6,9; 16 Se Cen. N.Y.=
northeast= b.9; d.3; N. Cen. Penn.-
southwest deb.7 N.W. Va.
Spring 1980 20° 10-350
(3.1%)
Predicted Elliptical; moderate Northeast— 1 REG VI.b.7,8; 17 E. Ohio=
southwest del,2,4 E. Penn.
Observed Irregular; moderate Northeast- 1 REG VI.be4,5 12 E. Ohio-
to small southeast W. Penn.
Spring 1981 158 » 120-
240
Predicted Elliptical; moderate Northeast- L REG VI.b.8; 14 S.W. Penn.
southeast de2
Observed Irregular; moderate Northeast- L REG VI.d.3 14 NeW. Va.
southeast
Autumn 1980 158 600-
(16.6%) 1200
Predicted Elliptical; moderace Northeast= 1 REG VI.c.3,6; 14 We NoYeo=
southeast del,2,5,6 N.W. Penn.
Observed Irregular; moderate Northeast- ) 8 REG VILI.b.7,8; 12 S.E. Onctario-
southeast IX.cela2 S. Quebec
Autumn 1981 90° 720-
960
Predicted Elliptical; small Northeast- 1 REG VI.d.l,2, 7 E. Ohio=
to moderate southeast 4,5; bab, We Benn.
5,7,8
Observed Irregular; moderate Northeast- 1 REG V.b.l,2 7 Ontario-E.
southeast Lake Superior

2The numbers in parencheses are the I[SDME (Clark et al. 1987a) computed differences in major axis orientacion.



FIGURE 5.26 ISDME Model Evaluation Region (Clark et al. 1987b)

geographic area of significant differences was determined by totaling the percentage of
half-degree grid cells, within each subregion, where significant differences occur. The
results of the analysis showed that ASTRAP significantly overpredicts in all subregions
and seasons except the northeast in the summer, northeast and southwest in the spring,
and the northeast in the winter. The southeast subregion contained the greatest
percentage of regional area for which ASTRAP significantly overpredicts, ranging from
20% in the spring to 54% in the winter and autumn. The subregion with the smallest
percentage of regional area with significant overpredictions was the northeast, with less
than 29% of its area significantly overpredicted by ASTRAP. No significant over-
predictions occurred in this subregion in the spring and winter.
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Figure 5.27 shows the geographic areas for each season in which ASTRAP
significantly overpredicts or underpredicts the observed deposition values. The plus and
minus symbols indicate the areas where ASTRAP predictions exceeded the uncertainty
envelope (determined by kriging) of observations by plus or minus two standard
deviations. A 95% confidence interval can be assumed if the deviations of the kriged
values from the true values are assumed to be normal. A cross-validation analysis using
the Shapiro-Wilk test was used to verify this assumption (Clark et al. 1987a). The
results indicate that it was not unreasonable to consider the results valid at the 95%
confidence level. The data in the figure show that pockets of significant underprediction
(in northeast Illinois, central Ohio and New Brunswick, and northwest Arkansas) occur
only for the summer and the spring simulations. The extent of geographic overprediction
shown indicates that ASTRAP does not represent the spatial variation in the magnitude
of the observed spatial pattern very well in the winter and autumn. The model seems to
do better in the summer, with the best results in the spring. The explained interseasonal
variance reported previously (Sec. 5.3.1) indicated that the explained spatial variance of
ASTRAP was best for summer simulations and worst for autumn simulations. The spring
and winter results were poorer than the summer results, but not as poor as the autumn
results.

Figure 1.1, App. I, contains the simple kriged ASTRAP predictions (Clark et al.
1987a) for each season in 1980. Although the general shape and orientation are very
similar to our contours (Figs. 5.22b and d, and 5.24b and d), the spatial location of the
magnitudes of predicted wet deposition did not correspond very well with our results.
Several differences between the two studies could explain this discrepancy: (1) the
ISDME-defined climatological season began on January 1, 1980; ours began on
December 1, 1979, and (2) the more restrictive observational data screening criteria we
used produced a different set of model verification data points.

5.4 POTENTIAL FACTORS OF INFLUENCE ON APPARENT MODEL PERFORMANCE

Several long-range transport and deposition model evaluation studies, some more
comprehensive than others, have compared daily, monthly, seasonal, or annual
predictions of wet S or SOj deposition and/or SOy and SO} air concentrations with
corresponding observations. Some of the elements of these studies are listed in
Table B.1, App. B. Although the studies applied similar model performance measures and
found a number of similar results, considerable variation in the quality of model
performance and some apparent inconsistencies in behavior were also exhibited. General
problems included the amount and quality of input data and pollutant measurements, and
problems with methods for preprocessing wind field and precipitation data to obtain
consistent, physically reasonable results. Different methods for interpolating wind-field
measurements yield substantially different wind fields, a phenomenon that is
symptomatic of the poor determination of transport winds often cited as a basie
limitation of models. Variations in performance among different models and between
different versions of the same model in different studies could often be traced to
different choices of parameter values representing physical processes, but performance
was usually not tested for ranges of such parameters. As a general tendency, models
reproduced SO better than SO, air concentrations and worked better with long-term
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averages (monthly and annual) than with short-term averages (daily or hourly). Models
were not expected to do as well in predicting wet deposition as they did in predicting SOZ
air quality, and in the study conducted by Ruff et al. (1985), this proved to be the case.
However, in a study by Stewart et al. (1983) and in the MOI (1982) study, correlations
bet_ween predictions and observations were higher for wet SOZ deposition than monthly
SO, air concentrations. In general, models corresponded relatively poorly with
observations in the Ruff et al. study (1985) and MOI (1982) study and substantially better
with observations in the Stewart et al. (1983) and Elliassen (1978) studies. A number of
explanations have been offered for those variations in results (Ruff et al. 1984), including
the fact that different averaging periods were used in the Ruff study, and different data
preparation methods were employed. The evaluation of wet-deposition mass flux rather
than ionic concentrations and the use of different procedures for adjusting precipitation
quantities at monitoring sites have also been suggested as probable causes of the variable
results.

These studies, and more recently the NAPAP (1987a,b) Interim Assessment,
suggest that some judgments on how well models perform can be made, but few determi-
nations as to why they performed in that manner can be made. This section of our report
looks at the "why" in model performance by examining four factors that may account for
the noted variations in performance results. The influence of varying model internal
parameterization was examined in Sec. 5.2 of this report. The factors that we will
examine here are (1) different geographic regions, (2) different sampling protocols,
(3) different levels of spatial aggregations of predicted and observed variables, and
(4) the use of wet-deposition fluxes versus precipitation-weighted ionic concentrations.
The selection of these factors is not intended to suggest that they are the only, or for
that matter, the most important influencing factors. Their selection was based primarily
on the fact that it is relatively easier to examine their influence than the influence of,
for example, alternative model formulations (i.e., the treatment of wind and
precipitation fields and the computation of pollutant trajectories).

The influence of different geographic regions om apparent model performance is
evaluated by segregating the model evaluation grid into ten geographical regions,
identified in Fig. 3.1. Table 5.14 gives the results of model performance across the ten
regions as measured by five performance indices. Since the spatial segregation method
chosen severely reduced the number of observation/prediction pairs available per region,
data from separate seasons were aggregated over individual years and over combined
years. Because of the sparsity of valid data points for individual-year aggregation, some
regions did not have a sufficient number of observation/prediction pairs to be included in
the regional ranking. Regions with N equal to ten or less were not ranked for individual
or combined years. Using the Rank Score Index to rank overall performance across
regions, ASTRAP performs best in Regions VIII and V and worst in Region IX when all
eight seasons are considered. Model performance is best for Regions VIII and V in 1981
and Region VIII in 1980, and worst for Region VII in 1981 and for Region IX in 1980.
Therefore, the model seems to perform best in north Ontario (Region V) and the Quebec
and Atlantic province (Region VIII).

The model's bias tendency seems to be that ASTRAP overprediets in l}igh—
deposition areas and underpredicts in low-deposition areas, i.e., the model deposlt}on
gradient is larger than the observed gradient, particularly in the winter (see deposition



TABLE 5.14 Comparison of Model Performance across Regions

Index of Agreement

Variance Log Error

Dimensionless Mean
Square Error

Mean Log Error

Rank Score Index

1980 1981 1980/81 1980 1981 1980/81 1980 ~ 1981 1980/81 1980 1981 1980/81 1980 1981  1980/81
Region (N)? (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)
1 0.86 0.71 0.76 0.055 0.076 0.072 0.165 0.449 0.345 0.182 0.289 0.254 1.57 2.22 1.99
(10)  (20) (30) (10) (20) (30) (10) (20) (30) (10) (20) (30) (10)  (20) (30)
2 0.73 0.6l 0.67 0.153 0.156 0.156 0.166 0.196 0.183 -0.345 -0.272 -0.302 2.03 2.26 2.13
(10) (14) (24) (10) (14) (24) (10) (14) (24) (10) (14) (24) (10) (14) (24)
3 0.87 0.59 0.69 0.061 0.179 0.147 0.051 0.189 0.136 -0.168 0.055 -0.022 1.446 2.12 1575
(8) (14) (22) (8) (14) (22) (8) (14) (22) ( 8) (14) (22) (8) (14) (22)
4 3 0.58 0.58 = 0.025 = 0.296 = 0.296 0.422 = = 2.47 = 2.417
o) (3) (3 (0) ( 3} (0) (3) (o) (3) (3) k((!) (0) (3 (o) ($3)
5 0.70 J.32 0.75 0.060 0.126 0.132 0.200 0.099 0.148 -0.376 0.011 -0.153 2.06 1.46 1.77
(14)  (18) (32) (14) (18) (32) (14) (18) (32) (14) (18) (32) (14)  (18) (32)
6 0.75 0.77 0.75 0.268 0.072 0.173 0.304 0.105 0.197 -0.439 -0.206 -0.309 2.34 1.68 2.01
(40)  (50) (90) (40) (50) (90) (40) (50) (90) (40) (50) (90) (40)  (50) (90)
7 0.72 0.66 0.68 0.155 0.224 0.198 0.162 0.179 0.169 -0.283 -0.474 -0.198 1.99 2.39 2.04
(18)  (19) (37) (18) (19) (37) (18) (19) (37) (18) (19) (37) (18)  (19) (37)
8 0.91 0.86 0.91 0.035 0.104 0.079 0.092 0.112 0.103 0.223 0.057 0.131 1.45 1.44 1.41
(1)  (13) (24) (11) (13) (24) (11) (13) (24) (11) (13) (24) (11) (13) (24)
9 0.48 0.70 0.63 0.098 0.105 0.108 0.344 0.196 0.240 -0.547 -0.388 -0.431 3.07 2.12 2.37
(14)  (37) (51) (14) (37) (51) (14) (37) (51) (14) (37) (51) (14) (37) (51)
10 0.90 0.62 0.80 0.061 0.092 0.085 0.043 0.095 0.069 0.013  0.205 0.103 1.23 2.00 1.51
(8) (1 (15) (8) 7 (15) (8) 7 (15) ( 8) cn) (15) (8 (1 (15)

dNumbers in parentheses are the number of observation/prediction pairs (N).
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contours in Sec. 5.3). This tendency is indicated by the sign and magnitude of the mean
log error in Table 5.14. Underprediction is obvious in Region I (positive MLE) and slight
in Regions VIII and X, which tend to be the lower-deposition areas. Overprediction is
clear in Regions II, VI, VII, and IX, which tend to be higher-deposition areas. Because
Regions VIII, IX, and X tend to span medium- and low- or medium- and high-deposition
areas, one should avoid drawing any strong conclusions based on these regions.

Some key factors that may influence the apparent model performance across
regions include uncertainties in the spatiotemporal distribution of (1) precipitation
amount and rate, (2) emission sources, and (3) transport meteorology. As mentioned
earlier, most of these factors cannot easily be investigated. However, differences in
sampling protocol (design, sampling period and frequency, chemical analysis, and data
interpretation) may also play a role and can be readily investigated. Several years ago,
Hakkarinen (1982) compared data from six North American precipitation chemistry
networks with daily, weekly, biweekly, and monthly collection frequencies. He found
that significant differences in precipitation chemistry measurements can be attributed to
differences in sampling protocol. With this in mind, we segregated and grouped data
from the seven monitoring networks used in our study into three groups: daily, weekly,
and monthly. The model's performance in relationship to these three data groupings is
summarized in Table 5.15. The data clearly show a degradation of apparent model
performance as sampling frequency increases, with daily or event samplers showing
significantly lower model performance levels than the monthly samplers. Performance
evaluated with the NADP (weekly) samplers was closer to performance evaluated with
monthly samplers than with event samplers. A similar pattern of performance evaluation
dependence on sampling protocol exists when the same performance measures are
computed for individual seasons (see Table J.1, App. J). If the differences in apparent
model performance were a result of sampling error, this pattern of performance with
sampling protocol would not be expected. In other words, samples that are left in the
field for shorter time periods should be less susceptible to environmental contamination
and evaporation.

»

As noted previously in See. 5.1.2, model predictions at MAP3S sites (event
samplers) accounted for the greatest number of cases of overprediction by a factor of
two (or greater). The seasonal distribution of prediction-to-observation (P/O) ratios that
are greater than 2.0 for daily, event, and combined weekly and monthly samplers is given
in Table 5.16. Of the P/O ratios at MAP3S sites, 40% or more were greater than 2.0 for
all seasons where the factor-of-two overpredictions existed. It was only during the
spring and summer of 1981 that no model predictions exceeded observations by a factor
of two. The total number of P/O ratios greater than 2.0 at the other daily samplers
(none occurred at the APN or APIOS-D network sites) and at the weekly and monthly
samplers is much less than the total occurring at the MAP3S sites. The frequency of
factor-of-two overpredictions is more than 35% (53 valid samples) at MAP3S sites, with
at least one overprediction per site at eight of the nine sites in the MAP3S network. The
frequency at which this degree of overprediction occurred is much less (<2%) at the
CANSAP and APIOS-C (monthly) sites and NADP (weekly) network sites. More than 75%
of the factor-of-two overpredictions can be accounted for when ratios at both event and
daily (UAPSP) sites are considered, and more than 94% can be accounted for when ev.ent,
daily, and weekly (NADP) sites are considered. When the sampling protocol across regions



TABLE 5.15 Protocol Sampling Period Influence on Model Performance

Performance Measuresb

Sampling
Year Protocol? N I0A DMSE VLE MLE RSI MSE % MSES SERP (%) PS
1980 Monthly 38 0.84 0.152 0.157 0.024 1.52 8.5 23.0 17.3 20
Weekly 37 0.8 0.195 0.157 -0.200 1.72 15.6 25.4 22.9 24
Daily 63 0.74 0.363 0.151 -0.478 2.34  20.5 68.7 5352 23
1981 Monthly 54 0.94 0.080 0.090 0.090 1.32 3.0 51.1 29.6 23
Weekly 86 0.83 0.147 0.147 -0.114 1.6l 9.1 43.7 36.6 23
Daily 700 0.76° " 0:2208 001718 =026 08 1N07ERS15 00 40.0 28.7 23
1980/1981 Monthly 92 " D0.90 "0.117°0.119 0.063 1.4l 5.3 22.8 17.4 20
Weekly 123 0.85 0.165 0.152 -0.140 1.63 11.1 21752 17.5 24
Daily 133 0.75 0.286 0.174 -0.363 2.16 16.5 58.8 39.3 23

ayeekly = NADP; Monthly = APIOS-C, CANSAP; Daily/Event = UAPSP, APIOS-D, MAP3S, APN.

by = number of observation/prediction pairs
IOA = index of agreement
DMSE = dimensionless mean square error

VLE = variance logarithmic error
MLE = mean log error

RSI = rank score index

MSE = mean square error

MSES systematic mean square error

SERP = systematic error reduction potential
PS = parameter set

0zT



TABLE 5.16 Seasonal Frequency of ASTRAP Factor-of-Two Overpredictions at Model
Evaluation Sites as a Function of Sampling Protocol

1980 1981
Sampling
Protocol Win. Spr. Sum. Fall Win. Spr. Sum. Fall
Event (MAP3S) 3(4)20m2(5) 2(5) 4(7) 4(7) 0(7) 0(8)  4(9)
Daily (UAPSP) 2(6) 2(6) 1(6) 2(4) 1(3) 0(6) 0(1) =S 1(5)
Daily (APN) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 0(5) 0(5)

Daily (APIOS-D) 0(0)  0(0)  0(0)  0(3) 0(0) 0(0) 0(9) 0(7)
Weekly/monthly  0(12) 1(12) 0(23) 3(30) 0(22) 0(42) 0(49) 4(44)

Totals 5 5 3 9 5 0 0 9

dNumbers in parentheses are the total number of valid samples.

is examined, regions with the poorest overall performance (e.g., RSI >2.1, see Table 5.14)
have the greatest number of MAP3S event samplers.* This suggests that real regional
variations in ASTRAP performance, especially in regions with extreme negative bias,
may be compounded with apparent bias associated with different observation sampling
protocols.

Published studies that compared precipitation chemistry results derived from
networks with different sampling protocols were reviewed. The first item to be checked
was whether any changes had occurred in MAP3S network operation. The only significant
change was in the type of collector. This change was made between November 1979 and
April 1981. Before the change, the Battelle Pacific Northwest Laboratory (PNL) design,
a polyethylene funnel and bottle precipitation collector: had been employed (Dana and
Easter 1987). The current network (after the change) uses the Health and Safety
Laboratory (HASL) wet-dry, two-bucket collector. The Aerochem Metries (ACM)
collector, which is patented from the HASL design, is used at most major U.S. networks,
including the NADP network. The PNL and HASL collectors were compared in two
studies. The first study was conducted during eight months of MAP3S operations.
Comparisons of samples taken from co-located PNL and HASL collectors were made at
four MAP3S locations (MacCracken 1979). The second study was done at ANL, using
samples taken during the summer of 1979 from co-located collectors (Sisterson et al.
1979). The results from both studies showed that the reliability of the two collectors and
comparability of the samples were about equal. When these results and the widespread
use of ACM collectors (HASL-type samplers) in the NADP network were considered, the

*The region with the worst overall ASTRAP performance (Region IX) has five of the
seven factor-of-two overpredictions from three MAP3S event samplers. Performance in
Region II was nearly as bad, with five of six factor-of-two overpredictions at the event
samplers.
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quality of the samples from different collectors did not seem to be the cause of the large
extent of factor of two overprediction at MAP3S sites.

We then looked at studies comparing the precipitation chemistries from samplers
with different collection frequencies. Several studies that included comparisons of SOy
ion concentrations were found (Hakkarinen 1982, Chan et al. 1985, Sisterson and Tisue
1985, Topol and Lev-On 1986; and DePena et al. 1985). Three of these studies were
examined in detail: the comparison of North American precipitation chemistry by
Hakkarinen, the evaluation of sampling periods and types in Canadian networks by Chan,
and a study of data collected over a two-year period by Sisterson, comparing co-located
event and weekly samplers at ANL.

Hakkarinen found that networks with longer sampling periods (weekly to monthly)
tend to report higher concentrations of soz ions than networks with shorter sampling
periods (daily or event); however, no explanation was offered for these differences. Chan
found that samples collected at monthly intervals exhibited higher SOy concentrations
than samples collected daily. The higher SOy readings in monthly samples (CANSAP
network) were attributed to evaporative losses and contamination from dry deposition.
Sisterson used data collected at ANL from April 1980 to March 1982. Chemical
differences in the annual and seasonal mean concentrations of nine chemical species
were compared. Results showed that the seasonal SOZ' ion concentrations derived from
the weekly sampler data were significantly greater (statistically significant differences
exceeded analytical uncertainty) than concentrations derived from the event sampler
data in five of eight seasons, the exceptions being the summers of 1980 and 1981 and the
spring of 1981. The computed concentration differences (weekly-event means) that were
significant over the entire period showed that weekly soj ion concentrations exceeded
event concentrations by 11.3% in the spring, 22.7% in the fall, and 21.3% in the winter.
The reason given for these differences is chemical changes (dissolved SO, oxidation to
SO,) that occurred in the weekly sample between the time it was collected and
laboratory analysis (Peden and Skowron 1978).

Dissolved SO [measureq as S(IV)] deposited into an event collector has less
opportunity for conversion to SOy [S(VD)] because the event sample is in the collector for
a shorter time and is refrigerated or frozen immediately after collection and kept in this
condition until analysis. This conversion can also be minimized by chemically fixing
aliquots of the sample with a solution of tetrachloromercurate (TCM) immediately after
collection (TCM forms sulfate-complex and aqueous-phase sulfur-IV valence-state SO§)
and refrigerating or freezing the sample at or near the same time (Dana 1980). The
event samples taken at the ANL site were refrigerated but not chemically fixed. The
weekly samples were neither refrigerated, frozen, nor chemically fixed. These weekly
samples were preserved by filtering only after arrival at the analytical laboratory, which
was from several days to a week after collection. Since cold ambient temperatures in
winter would preserve both the event and weekly samples in the field, one might expect
to see less significant differences in winter. However, frozen samples were thawed to
take an aliquot for pH and conduectivity analysis. The event samples were then preserved
by refrigeration before further laboratory analysis, while the weekly samples were not
(Sisterson et al. 1985). (This procedure is essentially the procedure followed in the
MAP3S and NADP networks.) Therefore, the significantly higher SOZ concentrations in
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the weekly samples than the event samples in the winter were most likely the result of
conversion of dissolved SO, to SOy after collection. Cold-temperature preservation of
the event samples in fall and spring 1980 produced similar results. The reason that no
significant differences occurred in the summer and spring 1981 samples could be that
oxidants (i.e., 03, HZOZ) were plentiful and the ambient temperatures were warm enough
for essentially all of the S(IV) initially in the precipitation to be converted to S(VI) by the
time an event sample was collected.* Dana (1980) found that sulfite in summertime
samples at four MAP3S sites was barely detectable. Less sulfite would remain available
for gradual conversion in the weekly samples, thus leading to the noted insignificant
differences in weekly and event sample SOy concentrations in warm seasons.

It appears, therefore, that a major contributing factor to the greater occurrence
of significant ASTRAP overpredictions (P/O >2.0) with event or daily collectors than
with weekly or monthly collectors, particularly during the colder seasons, is the more
complete oxidation of S(IV) to S(VI) for collectors on longer sampling protocols. The cold
temperatures and absence of oxidants in the winter, with a resulting observed S(IV)
maximum in the winter (Dana 1980), would seem to explain the observed SOZ deposition
minimum in samples that are preserved. The S(IV) would gradually be converted to S(VI)
in samples that are not preserved. The wet-removal parameterization in ASTRAP is for
bulk sulfur (i.e., removal rates for SOy and SOZ are identical). While initial wet removal
of SOy in the atmosphere is more efficient than removal of SO, (the SOy aerosol serves
as cloud condensation nueclei), in-cloud oxidation of SO, can be rapid, especially in the
summer when oxidants are plentiful and total sulfur deposition is several times larger
than observed in the winter. The wet sulfur deposition predicted by ASTRAP corresponds
to the bulk sulfur equivalent of combined S(IV) and S(VI) and should, if S(IV) is not
measured, more closely correspond to observations in which sample preservation of S(IV)
is not ensured (NADP, APIOS-C, CANSAP, ete.). This, in fact, seems to be the case, as
indicated with the results presented in Table 5.15.

The third factor investigated that could potentially influence model performance
is a change in spatial scale for averaging paired observations and predictions. The scales
selected for these pairings are individual site, unit-grid inecrements (30-40 km); nine-grid
inerements (300-390 km); and twelve-grid increments (1,200-1,560 km). Figure 3.1 shows
the relative sizes of these grid scales. The spatial average deposition within each grid
was computed as a simple arithmetic average. Table 5.17 summarizes the statistical
measures used to examine changes in model performance over the four chosen levels of
spatial aggregation. Grouped seasonal data were used for each year (1980 and 1981) and
for the combined years. The comparisons show that model performance improves as the

*Hales and Dana (1979) found that the solubility of SOy increases with increasing
temperature, decreasing free acidity (increasing pH), and increasing gas-phase SOy
concentrations. In addition, laboratory kinetic studies and atmospheric measureme{lts
have shown that HyO, may be the key atmospheric oxidant of dissolved S(.IV? species
(S04, SO3, HSO3) at solution pH <5.0 (Schwartz 1984, Lee et al. 1986). This is due to
the high aqueous solubility of H,0, and its increase in reaction rate with S(IV) as
acidity increases (Kleindiest et al. 1988).



TABLE 5.17 Comparison of Model Performance Based on Spatial Aggregation

Performance Measures

a

Level of

Year Aggregation N 10A DMSE VLE MLE RSI MSE % MSES  SERP (%) PS
1980 p1P 139 0.803 0.253 0.199 -0.263 1.96 15.7 29.4 13.4 17
Unit 133 0.795 0.262 0.203 -0.269 1.99 16.2 29.6 13.4 17

9 77 0.821 0.209 0.150 =-0.222 1.80 11.3 26.4 15.9 17

36 34 0.860 0.144 0,089 -0.203 1.60 6.8 32.0 25.8 17

1981 PI 230 0.836 0.158 0.155 =-0.108 1.62 8.7 17.1 0.3 11
Unit 195 0.837 0.158 0.163 -0.105 1.62 B0 5 0 0.5 11

9 102 0.844 0.152 0.153 -0.066 1.56 6.2 7.9 0.3 11

36 38 0.896 0.087 0.114 =-0.034 1.35 3.2 S 0.5 11

1980/ PI 369 0.820 0.197 0.177 -0.166 1.76 11.4 20.3 4.7 18
1981 Unit 328 0.815 0.205 0.186 -0.171 1.79 11.4 20.0 Tl 18

9 179 0.830 0.181 0.158 -0.133 1.68 8.4 14.6 8.4 18

36 72 0.877 0.118 0.109 -0.114 1.48 4.9 15.3 12,5 18

4N = number of observation-prediction pairs
IOA = index of agreement

DMSE = dimensionless mean square error

VLE
MLE
RSI
MSE
MSES
SERP
I =

bpy =

variance logarithmic error

mean log error
rank score index
mean square error

= systematic mean square error
= systematic mean square error

parameter set

paired individually

9T



125

spatial aggregation scale gets larger. This may be because as the aggregation scale
increases, the influence of extreme values (with the larger number of data points
available) is likely to be reduced. There is essentially no difference in model
performance between the pairing of observations and predictions on an individual-site or
a single-grid basis, since few grid cells have more than a single sampling site. The
degree of improvement in model performance in aggregation over larger scales is greater
for the 1980 data than the 1981 data.

The last factor of influence in model performance that was investigated is the
use of PWICs. The seasonal SO, concentrations reported in the Acid Deposition System
(ADS) data base included SO, computed as a PWIC (in mg/L) and deposition computed
from PWIC as a wet sulfur mass surface flux (g/mz). A description of the computations
in ADS for deriving PWIC and deposition is given in App. K. Table 5.18 summarizes the
statistical measures used to compare model performance when observations and
predictions are paired as SO, PWIC versus mass deposition flux. Eight seasons of data
are reported. The data show that model performance for four simulated seasons (winter,
spring, and summer 1980, and autumn 1981) declined when observations and predictions
were compared on a PWIC basis. The opposite was true for the winter 1981 simulations
(RSI goes from 2.20 to 1.99). The simulations for the other seasons did not show any
significant change in performance with PWIC versus mass flux. Significant declines in
the explained spatial variance and total EBCV occurred for all seasons when data were
compared on a PWIC basis versus a mass flux basis (the changes are given in Table
5.17). These results are somewhat surprising, since one might assume that precipitation
weighting would smooth out some of the spatial error inherent in collecting and spatially
interpolating precipitation data. The decline in the model's ability to explain variance
with use of PWIC may be due to the fact that ASTRAP calculations utilize grided
precipitation fields rather than values measured at the wet-deposition observation sites.
Venkatram et al. (1986) and others have found that when receptor-specific precipitation
data were substituted into the diagnosed precipitation field, the agreement between
observed and predicted SOZ PWIC improved substantially. Although these results were
obtained with an episodic model, similar results were obtained by Clark et al. (1987a)
with a Lagrangian model for seasonal predictions.
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TABLE 5.18 Comparison of Model Performance Based on Precipitation-Weighted Ionie
Concentration Versus Mass Flux

Performance Measures?

TVE sve R'2
Season Form 10A DMSE VLE MLE RSI (%) (%) (%)
Winter 80  PWIC® 0.41  0.30 0.221 =0.197  3.16
Mass Flux 0.49 0.27 0.262 =0.246 2.82
Winter 81 PWIC 0.72 0<23 0.137 -0.232 1.99
Mass Flux 0.67 0527 0.242 -0.199 2.20
Winters PWIC 38.1 -10.8 27.3
Mass Flux 39.7 12355520
Spring 80 PWIC 0.55 0.28 0.121 -0.294 2,51
Mass Flux 0.63 0.24 0.121 -0.351 2.29
Spring 81  PWIC 0.77 0.13 0.131 -0.039 1.60
Mass Flux 0.82 0.11 0.116 0.015 1.46
Springs PWIC 33.3 -5.4 27.9
Mass Flux 32.8 16.5 49.5
Summer 80 PWIC 0.76 0.24 0.136 -0.030 1.72
Mass Flux 0.85 0.15 0.138 =0.055 1.52
Summer 81 PWIC 0.85 0.10 0.084 0.120 1.48
Mass Flux 0.85 0.11 0.100 0.054 1.43
Summers PWIC 29.5 25.7 55.2
Mass Flux 34.4 41.2 75.6
Autumn 80 PWIC 0.56 0.44 0.211 =0.325 2.76
Mass Flux 0.57 0.40 0.215 -0.410 2.78
Autumn 81  PWIC 0.51 0.39 0.132 =-0.359 2.84
Mass Flux 0.70 0.23 0.135 -0.315 2.1l
Autumns PWIC 24.6 -49.9 0
Mass Flux 36.5 4.0 40.5
a10A = index of agreement; DMSE = dimensionless mean square error;
VLE = variance logarithmic error; MLE = mean logarithmic error;
RSI = rank score index; TVE = temporil variance explained;
SVE = spatial variance explained; R'? = residual correlation coefficient

bpyIc = precipitation-weighted ionic concentration
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6 CONCLUSIONS AND RECOMMENDATIONS

After previous model evaluation studies (App. B) were completed, several
questions remained about the reliability and performance of Lagrangian meso- and
synoptic-scale transmission* and deposition (LMSTD) models.¥ The nature of these
technical issues, in turn, raised important questions about the ability and ultimate utility
of these models for formulating policies on controlling acid deposition. Some of the key
model performance issues raised are summarized here:

Cag temporal patterns in SOZ and SO, air concentrations and in wet
SO, deposition be reasonably reproduced?

How well can the magnitudes of maximum seasonal SOZ depositions
and SOZ and SO, air concentrations (DAC) be reproduced?

Are there significant differences in interannual seasonal (e.g.,
between summers of different years) and interseasonal (e.g.,
between winter and summer of the same year) performance of
LMSTD models?

How sensitive is model performance to linear adjustments in the
empirical parameterization of LMSTD models?

Are there significant interannual variations in the magnitudes of
predicted and observed wet deposition because of variability in
meteorology? Does this variability severely restrict our ability to
forecast reliable deposition patterns?

How well can we reproduce the spatial patterns in DAC
observations; i.e., can the spatial patterns, such as DAC contour
orientation, shape, and gradient magnitude, be reasonably
reproduced?

How well do LMSTD models perform in different geographical
regions, and can the basis for observed significant differences in
performance be reasonably identified?

Can we decompose error components into spatial, temporal, and
bias parts or into systematic or unsystematiec parts to gain a greater
insight into model performance?

*Transmission = transport and diffusion, chemical transformation, and wet and dry
removal (precipitation scavenging, dry-deposition physics, ete.).

$For use in predicting long-term (one month or longer) air-pollutant concentra

averages and pollutant-deposition flux accumulation.

tion
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The success of providing a reasonable reply to these issues is contingent upon
(1) the spatial resolution of the available model evaluation data base, (2) our knowledge
of the magnitude of error in this data base, and (3) the development of a model
evaluation methodology capable of bringing out the salient features of spatiotemporal
and bias error patterns. Although we feel the observational data base (DAC) used in our
study is adequate to evaluate the LMSTD model, we lack the data necessary to quantify
the error in this data base. The same lack of data on meteorology and emissions data
(the input to the model) exists. This lack of knowledge may preclude us from providing
complete and definitive responses to the above-referenced issues and to our study
objectives. (Quantification of error in the data base is an issue addressed in our
recommendations.)

The model evaluation methodology was selected to provide a group of
performance measures that could collectively meet our model evaluation objectives and
address the aforementioned model performance issues. Because no single or narrow
group of measures can be expected to provide a comprehensive response or a response in
which reasonable confidence can be placed, we borrowed, developed, evaluated, tested,
and adapted a broad group of statistical tools to meet our needs. These included
statistical spatiotemporal pattern display methods and parametric statisties for
quantifying residuals. The pattern display methods chosen and developed included
scatter and time-series plots, residual and observation-prediction histograms, normalized
and fractional bias and scatter error plots, and spatial pattern trends analyses or drift
estimation techniques (spatial interpolation methods such as simple and universal
kriging). A large group of deseriptive statistics supplemented the information provided
by the graphical methods. Some of the more important measures included mean square
error (MSE) and its dimensionless derivatives (i.e., spatial, temporal, bias, systematie,
and unsystematic components), index of agreement (IOA), rank score index (RSI), relative
DMSE (also a MSE derivative), bias, variance, correlation, and a number of logarithmie
indices.

6.1 SUMMARY OF MAJOR FINDINGS

Our results can be categorized under four headings: residual and scatter error
patterns, performance sensitivity in apparent model error, spatiotemporal and bias error
patterns, and potential factors of influence on apparent model performance. The key
findings under these four categories are given here. Greater physical understanding of
model performance could be gained if predictions of wet deposition and average air
concentrations were evaluated for the same periods. For instance, simulated
atmospheric concentrations might be too low because parameterized wet removal is too
high, but if simulated wet deposition for the same period is also too low, then some other
feature must be involved. Unfortunately, suitable observation data sets for wet
deposition and regional air quality did not coincide. References to the model
performance issues raised in the introduction to this section are made when appropriate.
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6.1.1 Residual and Scatter Error Patterns

The residual and scatter error in ASTRAP predictions are determined by applying
parametric statistical measures to quantify the magnitude of the apparent model error
and using graphical statistics to visually display the patterns of this error. The results
indicate that the magnitudes of maximum seasonal and monthly mean DAC can be
reproduced reasonably well. Without additional years of model evaluation data, however,
it is not possible to determine whether temporal patterns in observed wet soz deposition
are also reasonably reproduced by the model. The limited data analyzed show significant
interseasonal and interannual (among winters, springs, and autumns) differences in model
performance. More data are needed to confirm this. The major findings on ASTRAP's
performance in simulating monthly average air concentrations and then in simulating
seasonal wet deposition are highlighted.

6.1.1.1 Monthly Air Concentrations

e Residuals for monthly (January, April, and July) SOZ air
concentration are almost normally distributed, with at least 60% of
the differences in observations and predictions within one standard
deviation of the mean residual (o). The October distribution is
skewed to the left (strong tendency toward overprediction), with
only 30% of the residuals within one a. A slight to moderate
positive bias exists in monthly SOy predictions for July and January,
and a slight negative bias exists for April.

e The model overpredicts observed SOZ concentrations by greater
than a factor of two at one location in January and at five locations
in October. Model underpredictions of the same degree occur at
two locations in January and one location in J}le.

e The residual distributions for monthly SOq air concentrations
approach normality for all four simulation months. A positive bias
(underprediction) tendency in 802 predictions is exhibited for all
simulation months, more so for January and April than for July and
October.

e The model underestimates observed monthly SOq air concentrations
by greater than a factor of two for 12 of 145 observations: three in
January and July, four in April, and one in October. The same
degree of overprediction occurred only at single locations in
January and July.

e Although the bias error is smaller over the first three months for
SOZ, ASTRAP seems to track the variations in mean monthly SOy
observations better than the variations in mean monthly SOy
observations. Local variations in meteorology and emissions, not
adequately resolved in our model input data base, may be the major
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contributing factor leading to this underprediction in SOg
simulations.

e The relative error (expressed as the DMSE percentage of the
MSO/(0)% i ASTRAP monthly SOE predictions ranged from 4%
(July) to 33% (October), while the relative error for ASTRAP
monthly SOg predictions ranged from 18% (October) to 25%
(January).

e ASTRAP is able to explain 49% of the variance in July SOy
observations and 37% of the variance in January _and July 502
observations. Only 15% of the January observed SOy variance and
26% of the April observed SOq variance is explained.

e As measured by a robust performance statistic, RSI, ASTRAP does
very well in simulating July SOZ air concentrations. Performance is
adequate when simulating July SO,. The model performs poorly
when predicting S0, and S04 in January and April, and when
predicting SOy in October. Less than adequate performance is
exhibited when simulating October SOy. The very good model per-
formance for July SO; may be due, in part, to the availability of
better empirical data used for ASTRAP parameterization of
summer transformation rates (SOZ to SOZ) thag the data available
for other seasons. ASTRAP's predictions of SO concentrations are
most sensitive to variations in transformation rates (see discussion
in See. 6.1.2).

6.1.1.2 Seasonal Wet Sulfate Deposition

e The summer 1980 and 1981 residuals for wet soz seasonal
deposition are approximately normally distributed, with over 70% of
the observation-prediction differences within one o,. The residuals
for winter 1980 show the farthest departure from normality, with
only 44% of the residuals within one o,.. When seasons are
combined, the 1981 distributions of residuals are shown to approach
normality (76% within one Ur)’ and the 1980 distributions are shown
to depart from normality (only 47% within one o). The greater
number of data points (observation-prediction pairs) available in
1981 probably caused the difference in the 1980 and 1981
distributions.

e Model predictions for summer 1980 and spring and summer 1981
show the smallest scatter (with respect to other seasons) and the
most symmetrical (unbiased) scatter around the perfect prediction
line. Comparisons of observations and predictions for the remaining
seasons show a tendenecy for model overprediction.
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* The model overpredicts observed SOZ deposition by more than a
factor of two for 22 of 133 observations in 1980 and 14 of 195
observations in 1981. Over 75% of these overpredictions occurred
in the winter or the fall at sites on an event or daily sampling
protocol. The same degree of underprediction occurred at only
three locations, one in summer 1981 and two in winter 1981.

e It is interesting to note that the factor-of-two over- and
underprediction data points are predominately represented by
precipitation chemistry samplers with event (MAP3S) and daily
(UAPSP) sampling protocols. This suggests that there may be
systematic differences in observations resulting from sampling
protocol (see Sec. 6.1.4).

e The time series of the apparent bias in predictions shows a stronger
tendency toward model overprediction in 1980 than 1981, especially
in the spring. The ratio of the coefficient or variation of
predictions to the coefficient or variation of observations (CVR) is
close to 1.0 for all seasons except winter 1980 (CVR = 0.52), winter
1981 (CVR = 0.84), and spring 1980 (CVR = 1.8). The model seems
to track the season-to-season variation in observed wet SOZ
deposition fairly well.

e The relative error [expressed as the DMSE percentage of the
MSO/(O)Z] in ASTRAP seasonal wet SO deposition predictions
ranged from 9% (summer 1981) to 34% (fall 1980).

e Model simulations in summer and in spring and fall 1981 exhibit
about 50% to 55% of the observed variance, while simulations in
winter 1980 exhibit only 5% of the observed variance. The
explained bias-corrected variance (EBCV) between seasons,
decomposed into spatial and temporal components, is given in
Sec. 6.1.3.

e Using a robust statistical measure, RSI, we found that ASTRAP
performs best in simulating seasonal SOZ wet deposition for summer
and spring 1981. Performance drops off sharply when simulating
seasonal observations in autumn and winter 1980. The interannual
differences in model performance appear significant for all seasons,
except winter and fall of 1980 and spring and summer of 1981.
These results should be viewed with caution because of the limited
amount of data available (only 2 years) for comparing differences in
interannual and interseasonal model performance.

6.1.2 Performance Sensitivity Patterns In Apparent Model Error

The sensitivity in ASTRAP model performance is examined by a factor-of-two
adjustment to four internal model parameters (V4 for SOy and SOy, Ty, and WC). The
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dry-deposition velocities (V ) were varied in the same direction simultaneously and
counted as a two-parameter var1at1on. All references to ASTRAP pertain to results for
the unmodified version. Since variation of internal model parameters does not greatly
alter the shape, position, and orientation of the predicted contours, the performance
sensitivity pattern analysis did not consider the model's sensitivity in reproducing
observed spatial patterns. The results indicate the uncertainty variations (100% larger or
50% smaller) in ASTRAP parameters considered in this study can significantly influence
the magnitude of model predictions and the level of performance in those predictions.
Model estimates of SO, and SO4 air concentrations are most sensitive to variations in V4
and transformation rate (T,), respectively. Overall, the predicted SO4 air concentrations
are more sensitive to parameter variations than the predicted SOo air concentrations.
Model estimates of wet deposition are most sensitive to variations in wet-removal
coefficient (WC). The major specific findings are highlighted in the following sections.

6.1.2.1 Monthly Air Concentrations

e Distinet performance sensitivity patterns emerge for SOZ and SOg
simulations when the selected model parameter adjustments are
made. The performances of the 27 model versions resulting from
these adjustments (including the nominal or standard ASTRAP) are
clustered on a normalized bias-scatter error plot in parameter
sensitivity groups of three (triple) and nine (triplet). The triple
clustering for SO, is performance-ordered by T, while the triple
clustering for SO is performanced-ordered by V4. The triplet
clustering for SO, is performance-ordered by V,, while the triplet
clustering for SOy is performance-ordered by T,. The individual
model versions within triples are performanced-ordered by WC.
There is less performance sensitivity for 302 triples and triplets
than for SO4 triples and triplets. In other words, internal parameter
variations affect model performance more when SO air
concentrations are simulated than when S0, air concentrations are
simulated.

e Simulations of SOZ are most sensitive to variations in Vd’ followed
by variations in T, and WC. Simulations of SO4 are most sensitive
to variations in Ty followed by Vd and WC. Because SO;
concentrations are linear functions of SOZ emissions in ASTRAP but
are affected by T, in an opposite way than are SOZ concentrations,
the extremes produced by parameter adjustments require that
parameters with the most sensitive influence on air concentrations
(Vd and Tr) be adjusted in opposite directions.

e By making the parameter adjustments con51dered, the model's
ability to reproduce observed monthly SO air concentrations
improved by as much as 34% (by halving the Vd and T, and doubling
the WC for October predictions). No significant 1mprovements were
evident in July SO4 and SO, and October SO, predictions.
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e The systematic error reduction potential (SERP), through internal
model parameter adjustment, is greatest for October SO4
simulations (SERP = 59%). The SERP for S0, and SO4 predictions
in April and January is around 23%. This suggests that a significant
fraction of the systematic error in model predictions for these
particular monthly periods can be reduced through adjustments in
model parameterization. The systematic error in model predictions
is inherent not only to model parameterization but also to the
measurement of air concentrations, quantification of source
emissions, and generation of wind and precipitation fields. Without
a means to segregate the sources of systematic error in model
predictions, any revisions to model parameterization should be made
cautiously, and in any case, only with the support of data obtained
through field verification. Recommendations are made in Sec. 6.2
on the importance of quantifying model input and evaluation data
(field measurements of DAC) error and on the statistical treatment
of this error to more readily identify its sources (i.e., model
parameterization, field measurements).

6.1.2.2 Seasonal Wet Sulfate Deposition

e Distinet patterns in model performance sensitivity emerge in the
wet-deposition simulations when the selected model parameteriza-
tion adjustments are made. The performances in model predictions
resulting from these adjustments are clustered on normalized bias-
scatter error plots in groups of three (triple) and nine (triplet).
Triple clustering is performance-ordered by Vg, while triplet
clustering is performance-ordered by WC. For the parameter
adjustments considered, these patterns, reveal that model
performance for wet SOZ deposition is most sensitive to variations
in WC, followed by variations in V.

e The parameter adjustments did not improve the model's ability to
reproduce wet deposition as much as they had for air
concentrations. A maximum of 16% improvement over ASTRAP's
performance occurred for the autumn simulations, with WC halved
and with T, normal or doubled. None of the parameter-set
adjustments consxdered provided better results than the results
obtained with ASTRAP summer and spring 1981 simulations.

e The SERP achievable through our internal model parameter
adjustment is greatest for autumn (41% in 1981 and 14% in 1980)
and spring (22% in 1980) wet SO4 deposition prediections. These
results suggests that a significant fraction of the systematie error
in model predictions for these seasonal periods, most notably
autumn 1981, could be reduced through adjustments in model
parameterization.
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e Since systematic error is inherent to model input and model
evaluation data bases, any revisions to model parameterization
should be made cautiously and should be based upon relevant field
measurements. Recommendations are made in See. 6.2 on the
importance of quantifying model input and model evaluation data
(field measurements of wet SOZ deposition) error, and a method is
suggested to treat this error statistically in order to identify its
sources more readily.

6.1.3 Spatial, Temporal, and Bias Error Patterns

Error patterns are examined by decomposition of MSE into spatial, temporal, and
bias components and by decomposition of variance into spatial and temporal components.
Kriging is then used to further examine ASTRAP's ability to reproduce spatial patterns in
the observation fields (such as the position, shape, orientation, and magnitude of the
gradient in the contours). Although there are no significant variations in the magnitudes
of the maximum predicted and observed interannual wet depositions, there are
significant variations in the locations of the observed maxima. Since variability in
meteorology plays a substantial role in influencing locations where observed maxima
occur, the way wind and precipitation fields are treated (in most Lagrangian and in some
Eulerian models) may be the reason the model has trouble locating the maximum
deposition areas. All regional transport models have difficulty properly characterizing
local and subgrid variations in wind and precipitation fields. The model's inability to
reproduce other spatial features in the observed data, such as the shape, orientation, and
magnitude of the deposition gradient, may also result from problems in representing wind
and precipitation fields, although simplifications inherent in parameterizations of
chemical or removal processes may also contribute. With respect to wind fields, Kuo
et al. (1984) illustrated improvements in trajectory accuracy, versus the use of normal
NMC observations, through use of numerical weather prediction (NWP) models to
generate winds. These models would, in effect, be used as a sophisticated spatiotemporal
methodology for both winds and thermodynamic atmospherie properties. The winds
would be mass-consistent, dynamically correct, more reliable in data-sparse areas, and
potentially more descriptive of phenomena such as the noctural jet (Demerjian 1985).
The specific major findings follow:

e The spatial error in ASTRAP predictions of wet SOZ deposition
dominates, accounting for over 70% of the total error in the winter,
spring, and summer. The predicted wet SOZ deposition in the
autumn shows comparative levels of spatial and bias error, with a
relatively small contribution of temporal error to the total error.
The temporal error across seasons is smaller than the other two
error components, particularly for winter and autumn. These
results are probably caused by the statistically small number of data
points (two seasons) considered in our analysis. Although only 45%
of the error in the autumn predictions is spatial in origin, the
relative larger overall error in autumn (73% to 122% greater than in
spring and summer) makes the spatial error in autumn slightly larger
than that in spring and summer.
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e The model's ability to explain bias-corrected variance from one year
to another ranges from 41% for autumn simulations to over 75% for
summer simulations. The percentage of the total EBCV resulting
from the model's ability (inability) to reproduce the spatial patterns
in observations ranges from 10% for autumn simulations to 54% for
summer simulations. In contrast to this rather considerable
seasonal variation, a relatively small seasonal variation is shown for
the explained temporal variance. A maximum of only 7% variation
across seasons is exhibited for the temporal variance, while over
35% variation is exhibited for spatial variance. The model appears
to explain temporal variance from year to year well, but it does not
explain spatial variance from year to year so well, with the
exception of the summer simulations. Although these results seem
to be in line with results obtained through MSE decomposition,
additional years of data are needed to confirm these findings.

e A geostatistical interpolation technique known as kriging was used
to visually assess ASTRAP's ability to reproduce spatial patterns in
DAC. This analysis showed that although the magnitudes of the
observed maximum in SOZ air concentrations and wet SOZ
deposition are reasonably reproduced, the locations of these
maximums is not. The model also had difficulty in reproducing the
position, shape, and magnitude of the gradient in the observed
spatial patterns.

6.1.4 Potential Factors of Influence on Apparent Model Performance

Four factors that may account for some of the performance results for wet SOZ
deposition obtained in this study and for the variability in performance results obtained
in previous model evaluation studies were examined. The factors include (1) geographic
regions, (2) sampling protocols, (3) levels of spatial aggregation of predicted and observed
variables, and (4) the expressed forms of the observed and predicted variable (wet
deposited fluxes versus precipitation-weighed ionic concentrations). The major findings
follow.

e ASTRAP seems to perform substantially differently in different
geographic regions. Real regional variations in model performance,
especially in regions with extreme negative bias, may be
exacerbated by the apparent bias associated with observation
sampling protocol (see next item).

o Significant ASTRAP overpredictions (by more than a factor of two)
occurred much more often at observation sites with an event or
daily sampling protocol than at sites with a weekly or monthly
sampling protocol, particularly during cold or cool seasons. This
appears to be the result of the fact that samples with sulfur(IV) are
preserved before they are analyzed at sites with an event or daily
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sampling protocol (i.e., MAP3S). The sulfur(IV) in samples that are
not preserved (i.e., with a weekly or monthly sampling protocol)
gradually converts to SO4 [sulfur(VI)], thus leading to higher SO4
measurements in samplers with these protocols. The wet sulfur
deposition in ASTRAP corresponds to the bulk sulfur equivalent of
combined S(IV) and S(VI) and should more closely correspond to
observations in which sample preservation of S(IV) is not ensured.

e Aggregation and averaging of site observations and predictions over
larger spatial scales before comparison showed that model
performance improved as the aggregation scale got larger. This is
probably a result of smoothing of smaller-scale variations in
observations associated with terrain effects on mesoscale
meteorology or with local sources.

e When observations and predictions are compared on a basis of PWIC
versus mass deposition flux, ASTRAP performance declined for
simulations in four seasons, did not show any significant change for
three seasons, and increased for one season. These results may have
occurred because ASTRAP calculations use grilled precipitation
fields, not values measured at the wet-deposition sites.

6.2 RECOMMENDATIONS

Although this study helps to provide new insights on model performance
evaluation (MPE) methods and a better understanding of MPE results, we are still unable
to specify the level of uncertainty in model predictions and we still lack a fundamental
understanding of why LMSTD models perform the way they do. There are three areas of
further research could result in a way to quantify uncertainty and improve our
understanding of model performance. These research areas are (1) the completion of the
development and test application of the empirical Bayesian uncertainty quantification
methodology, (2) the estimation of model input and model evaluation data errors and the
explicit incorporation of these errors into measures of performance of model predictions,
and (3) the investigation of the sensitivity in model performance by local and global
variation of key model and model input variables. This recommended research is briefly
described.

6.2.1 Empirical Bayesian Probability Methodology

To explicitly quantify uncertainty in model predictions, we must make
hypotheses about that uncertainty and then test them. As previously mentioned in this
report, this requirement can be accomplished through application of a Bayesian
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probability formulation.* Bayesian methods, however, are often criticized because they
introduce heuristics or subjectivism into the process. Instead of depending on subjective
judgment to derive the prior distribution of model-predicted variances (prior to
comparison of predictions with current observations), a method called an empirical
Bayesian approach (EBA) can be used to derive the prior distribution through use of (for
lack of a better term) a baseline observational data base. We have already developed a
modified form of the EBA that assumes the prior distribution, but key parameters in that
distribution are derived empirically.

Our principal interest in the EBA is that it provides a means to compute the
probability of the outcome (success or failure) of a set of proposed actions (i.e., policy
options for the control or mitigation of acid deposition) based on the computed
uncertainty in the predicted variables that are pertinent to judging the outcome of policy
options. The probability of outecome of the proposed actions is expressed in terms of the
collective uncertainty of variables directly or indirectly affecting the outecome.
Uncertainty, applied to a model, generally pertains to the range of expected error
between the model predictions of a quantity and actual values of that quantity. Since
the model ordinarily predicts a number of values with varying errors, both error and
uncertainty must be described in terms of distributions of values. We seek various
measures of those distributions, ineluding means, standard deviations, differences among
various parts of the model domain, and ideally, a representation of the distribution
itself. For example, uncertainty could be quantitatively expressed in terms of the joint
conditional probability distribution for a set of true values xy, Xy, ..., X, given the
corresponding model predictions X1y Xgy eeey Xpo The task of an EBA is to estimate that
distribution, or at least certain measures of it, based in part on samples of apparent
error. However, it should be emphasized that uncertainty distributions reflect our
knowledge of the model performance and thus are subject to change as increased
information becomes available. For example, we might expect that the MSE between a
given set of predictions and true values would become better defined (i.e., smaller
variance about the expected value) as more data become available for evaluation of the
model.

*"n the Bayesian approach to statisties, an attempt is made to utilize all available
information in order to reduce the amount of uncertainty present in an inferential or
decision-making problem. As new information is obtained, it is combined with any
previous information to form the basis for statistical procedures. The formal
mechanism used to combine the new information with the previously available
information is known as Bayes' theorem; this explains why the term 'Bayesian' is often
used to describe this general approach to statisties. Bayes' theorem involves the use of
probabilities, which is only natural, since probability can be thought of as the
mathematical language of uncertainty. At any given point in time, the statistician's (or
the decision maker's) state of information about some uncertain quantity can be
represented by a set of probabilities. When new information is obtained, Fhese
probabilities are revised in order that they may represent all of the available
information." (Winkler 1972)



138

Figure 6.1 shows some of the major components of an empirical Bayesian analysis
framework for use in generating uncertainty distributions. A great deal of effort went
into developing and testing the empirical Bayesian model (EBM) during the initial stages
of this project. Additional work is needed to modify the "Bayes" integrals, used for
computing prior and posterior distributions and spatially averaged moments (means and
variances) to account for quantifiable biases inherent to the data base. Upon
consideration of the effort already expended, the availability of four additional years of
precipitation chemistry data (through 1986), and the important role source-receptor
uncertainty analysis could play in the future analysis of acid-deposition decisions and
policy, we highly recommend that the work in developing and testing the EBA be
continued.

6.2.2 Estimation of Error in Data Bases

As mentioned throughout this report, unquantified errors in the model input data
(i.e., emissions and meteorology) and errors in the model verification data (i.e., field-
measured air concentrations and wet-deposition fluxes) make the evaluation of why a
model fails or succeeds in reproducing observed spatial and temporal patterns extremely
difficult. Attention must be given to work that will attempt to estimate this error and
incorporate it into model evaluation performance measures. Most critical to improving
the understanding and interpretation of model performance are the estimation of error in
the model evaluation field data and the segregation (i.e., separation from model and
model input data) of this error so it can be expressed as separate error elements in the
computed model performance measures. One approach to the quantification and
segregation of observational error is the use of a maximum likelihood and least-squares
estimator as suggested by Jones (1979).

6.2.3 Model Sensitivity to Model and Data-Base Uncertainty Perturbations

If error bounds or limits in the model parameterizations and/or the processing
and treatment of the model input data can be set, then, in principle, sensitivity to model
predictions to local (one variable at a time) and global (all variables simultaneously)
variations within the specified error bounds can be determined. This determination can
be made by using methods such as global or local sensitivity analysis (with sets of
ordinary or partial differential equations) and/or empirical orthogonal function analysis.
In this study, we have only looked at model performance sensitivity in terms of variations
in four internal model parameterizations (Vd for SOZ and SOz, Tr’ and WC). Several
other model parameters or modeling assumptions (i.e., involving the use of higher-
resolution model evaluation and/or input data and the way these data are processed or
treated) not previously investigated can be varied. These could prove to be extremely
useful in diagnosing the sources of error in model performance so that performance can
be improved in a scientifically defensible manner. Some suggestions to consider are
listed.

* Diurnal and seasonal patterns of vertical profiles of eddy diffusivity
(an indicator of stability) and implied mixing heights
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Rate of loss of pollutant to the free troposphere by precipitation
systems

Upper and lower limits to dry deposition velocities during the first
three hours of dispersion

Primary sulfate emission factors

Increased transformation rate from near-surface emissions during
the first three hours of dispersion

Form of the wet-removal parameterization
Definition of meteorological seasons
Emission gridding algorithm

Depth of the atmosphere (well-mixed layer and above) in the
vertical integration

Minimum precipitation allowed to affect results
Depth of the horizontal transport layer

Assumption of a bivariate normal distribution of trajectory endpoint
ensembles

Choice of a six-hour trajectory time step

Relative seasonal and latitudinal variation in wet-removal
parameterization

Relative seasonal and diurnal variability of dry-deposition velocities
Use of multiple years of observed wind and precipitation fields

Relative seasonal and diurnal variability of linear transformation
rates

Use of monthly wet-deposition observations and monthly emission
rates to investigate model performance as a function of temporal
data-base resolution

Use of the most recent version of the NAPAP source emission
inventory

Variation in the spatial (horizontal and vertical) distribution and
magnitude of emission fields
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Use of alternative methods to generate air parcel trajectories (i.e.,
numerical weather prediction models)

Use of multi-year stochasticly generated wind and precipitation
fields to generate forecasted responses in source receptor
relationships (Small 1985, see App. N)

Examination of the feasibility of using existing and future dry-
deposition measurements from the Core Research Establishment
(CORE) network as a supplemental model evaluiation data base
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